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Irreversible fractal-growth models like diffusion-limited aggregation (DLA) and the dielectric breakdown
model (DBM) have confronted us with theoretical problems of a new type for which standard concepts
like field theory and renormalization group do not seem to be suitable. The fixed-scale transformation
(FST) is a theoretical scheme of a novel type that can deal with such problems in a reasonably systematic
way. The main idea is to focus on the irreversible dynamics at a given scale and to compute accurately the
nearest-neighbor correlations at this scale by suitable lattice path integrals. The next basic step is to identi-
fy the scale-invariant dynamics that refers to coarse-grained variables of arbitrary scale. The use of scale-
invariant growth rules allows us to generalize these correlations to coarse-grained cells of any size and
therefore to compute the fractal dimension. The basic point is to split the long-time limit (¢ — oo ) for the
dynamical process at a given scale that produces the asymptotically frozen structure, from the large-scale
limit (»— o0 ) which defines the scale-invariant dynamics. In addition, by working at a fixed scale with
respect to dynamical evolution, it is possible to include the fluctuations of boundary conditions and to
reach a remarkable level of accuracy for a real-space method. This new framework is able to explain the
self-organized critical nature and the origin of fractal structures in irreversible-fractal-growth models. It
also provides a rather systematic procedure for the analytical calculation of the fractal dimension and oth-
er critical exponents. The FST method can be naturally extended to a variety of equilibrium and none-

quilibrium models that generate fractal structures.
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I. INTRODUCTION: PHYSICS OF FRACTALS

Fractal geometry provides a new perspective of nature
and allows us to consider irregularities as intrinsic enti-
ties (Mandelbrot, 1982; Pietronero and Tosatti, 1986;
Stanley and Ostrowsky, 1986; Feder, 1988; Vicsek, 1992).
The property of self-similarity implies irregularities at all
scales, and for this reason it cannot be described within
the framework of the usual analytical methods. The
broader framework of fractal geometry provides a quan-
titative mathematical description of systems with self-
similar properties, and it enables us to include in the
scientific problematic a vast class of new phenomena in
various fields of science. At the level of phenomenologi-
cal description, the fields in which this concept has the
largest impact are disordered systems, critical phenome-
na, aggregation phenomena, nonlinear dynamics and tur-
bulence, the development of spatiotemporal intermitten-
cies and 1/f noise, self-organized critical systems, and
various others including the large-scale structure of the
universe. This last case is a good example of the impor-
tance of having a broader mathematical framework even
for the phenomenological description of experimental
data. Galaxy distributions are usually analyzed with sta-
tistical tools that imply a priori homogeneity at large
scale. The reanalysis of the same data with no a priori as-
sumptions leads us instead to conclude that no intrinsic
average density can be identified in these systems and
that fractal correlations extend up to the present observa-
tional limits (Coleman and Pietronero, 1992). This shows
the importance of the broader conceptual framework of
fractal geometry for systems with large fluctuations, even
at the stage of data analysis. Similar examples of phe-
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nomenological analysis or modeling can be found in vari-
ous other fields. The structure of velocity field in fully
developed turbulence, for example, can be described phe-
nomenologically by a simple model of multifractal cas-
cade (Benzi et al., 1984; Paladin and Vulpiani, 1987).
This interesting observation, however, does not explain
how scaling behavior actually arises from the Navier-
Stokes equation. This brings us to the basic problem of
trying to go beyond the level of a phenomenological
description and to address the basic question: Why nature
makes fractals?

In more specific terms, this question can be rephrased
as three points: (1) How are patterns generated? (2) How
does this happen at all scales? and (3) How does one as-
sign statistical weights to these patterns? In practice, one
cannot try to address this question for all fractal prob-
lems separately. One would like, instead, to develop first
some general concepts by studying in detail a particular
phenomenon and then trying to extend those concepts to
other cases. This is the scheme for the formulation of a
theory of fractal growth that consists therefore of two
stages: (a) define a model that contains the essential
physical ingredients for fractal growth; (b) develop the
theoretical concepts necessary to understand this model
and to compute its properties analytically.

The first part of this program was accomplished a few
years ago with the introduction of the model of
diffusion-limited aggregation (DLA; Witten and Sander,
1981) and the dielectric breakdown model (DBM;
Niemeyer et al., 1984). These models have a direct rela-
tion with several phenomena like dendritic growth,
dielectric breakdown, and viscous fingering, and they are
considered prototypical fractal-growth models in a more
general perspective, too. Extensive computer simulations
have been performed on these models, and they show a
self-organized behavior leading to fractal structures.

In relation to these models, the above set of questions
may be rephrased as follows.

(1) How does DLA make fractals? How is spatial sym-
metry spontaneously broken, and how are holes of all
scales left behind as the pattern grows? What distin-
guishes this set of growth rules from, say, the Eden mod-
el, which leads instead to compact structures?

(2) How can we compute the fractal dimension analyti-
cally and understand the self-organized nature of this
process? This is a non-Hamiltonian system whose dy-
namics is intrinsically irreversible, so that we have no a
priori way in which to assign a statistical weight to the
density fluctuations.

Before we try to address these questions for DLA and
the DBM, it should be noted that in physics there is a
rich domain of scale-invariant phenomena, namely,
second-order phase transitions, for which the
renormalization-group (RG) theory (Wilson and Kogut,
1974; Amit, 1978) provides a comprehensive understand-
ing of the scale invariance and critical behavior. This is
actually one of the.reasons for the increasing interest in
fractals among physicists. A characteristic of usual criti-
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cal phenomena is that they occur at the critical point of
equilibrium phase transitions. In retrospect, we can now
see that the usual theoretical framework of the RG refers
to the self-similar properties that occur exactly at the
equilibrium point and, in practice, are rarely observed
unless one looks for them specifically. The fractal struc-
tures that are instead common in nature, like clouds,
trees, mountains, lightnings, galaxies, etc., arise instead
from a more common situation in which they represent
the attractor of an irreversible dynamical process that
leads spontaneously to complex scale-invariant structures
without the need for the fine-tuning of any parameter. It
is curious that among all the scale-invariant structures
that one can observe, those that were first studied in de-
tail and fully understood are the most hidden ones. It is
reasonable to conjecture that in the future the scale in-
variance of critical phenomena will represent just a small
class of cases, which had, however, an enormous intellec-
tual impact, within the broader framework of mostly
self-organized structures. The great theoretical challenge
is then to find a general theory for both critical and self-
organized scale invariance.

There have been several attempts to generalize the RG
theory for irreversible fractal growth and DLA in partic-
ular. Field-theoretical approaches (Parisi and Zhang,
1985; Peliti, 1985; Shapir and Zhang, 1986) lead to
effective Lagrangians that, however, correspond to an un-
renormalizable strong-coupling theory without upper
critical dimension and therefore cannot be treated with
standard methods. Field-theoretic methods have instead
been successful for the surface profile of the 2D Eden
model (Kardar et al., 1986). This problem is, however,
very different from that of the fractal dimension of DLA,
and it can be mapped into an effective equilibrium prob-
lem.

For the real-space renormalization group (RSRG), the
crucial problem is that, in irreversible growth, the
asymptotic fractal structure can only be defined when the
growing interface is infinitely far away. This can never
be achieved by integrating over degrees of freedom inside
a given box (Burkhardt and van Leeuwen, 1982). Fur-
thermore, in the interesting Nagatani (1987a, 1987b) ap-
proach (see also Wang et al., 1989a, 1989b), it is not pos-
sible to distinguish between fractal and nonfractal struc-
tures or to understand the self-organized nature of the
process. Another theoretical approach to DLA has been
developed recently by Halsey et al. (Halsey and Leibig,
1992; Halsey, 1994). The method is based on the com-
petition between DLA branches and seems very interest-
ing but specific to this model.

One can also look at the formation of fractal patterns
from the standpoint of systems of partial differential
equations. In this way one is able to determine, for any
set of parameter values, if a certain type of fluctuation
will be attenuated or, on the contrary, if it will grow.
However, one is not able to assign a priori weights to
fluctuations that may occur around a given solution. So
we are once more frustrated: not having a measure over

Rev. Mod. Phys., Vol. 67, No. 3, July 1995

our space of ‘“‘shapes,” we are unable to compute the ex-
pectation values and correlation functions, and thus un-
able to compute things like the fractal dimension.

Over the past few years we have developed a novel
theoretical method, the fixed-scale transformation (FST),
to deal with irreversible fractal growth by focusing ex-
plicitly on the irreversible dynamics. The method is
defined in real space; it is based on two steps that we il-
lustrate here for DLA, but which can be easily general-
ized to many other systems.

(1) Correlations in the ‘‘frozen” structure. For a given
dynamics (growth rules), one should be able to define the
correlation properties corresponding to the final struc-
ture generated by this process. This structure is frozen in
the sense that it will not continue to be modified by fur-
ther growth. This corresponds to an asymptotic time
limit (£ — o0 ) with respect to the growth dynamics. The
correlation properties of the structure are characterized
by an intersection set perpendicular to the growth direc-
tion. The FST is defined by the dynamical evolution, in
the growth direction, of the short-range correlation prop-
erties of this intersection. This construction refers to the
asymptotic final structure, and, in order to compute the
FST matrix elements, one must consider lattice path in-
tegrals defined by the growth rules. The calculation of
these path integrals can be improved in a systematic way;
in addition, by working at a fixed scale, it is possible to
include the effect of the fluctuations of the boundary con-
ditions. In this way one can achieve a remarkable level
of accuracy and systematicity for a real-space method.
From the FST fixed point, one obtains the correlation
properties between pairs of sites. In order to extend
these results to long-range correlations, the basic idea is
to reinterpret these ‘“‘sites” as coarse-grained block vari-
ables. This requires the identification of the dynamics
(growth rules) that refers to coarse-grained cells. If a
scale-invariant asymptotic dynamics can be identified, its
use in the FST allows us to characterize the correlation
properties between pairs of coarse-grained variables of
any size. From these one can finally obtain the asymptot-
ic correlation properties and compute the fractal dimen-
sion analytically.

(2) Scale-invariant dynamics. This problem consists in
the identification of the effective growth rules for coarse-
grained variables at the asymptotic scale. In practice,
one must consider a renormalization scheme for the
growth probabilities. It is easy to derive general symme-
try properties of the scale-invariant dynamics. For exam-
ple, probabilities defined per “site” evolve into “bond”-
type upon renormalization. In addition, the FST scheme
allows us to identify the crucial element for generating
fractal structures in the persistence of screening effects at
the asymptotic scale. A study of the scale transformation
of noise reduction shows the existence of an attractive
fixed point that allows us to understand the self-
organized nature of the growth process. In addition,
screening effects also remain strong at the asymptotic
scale, and the scale-invariant growth rules turn out to be
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rather close to the small scale.

This separation between long-time and large-scale lim-
its is crucial for the description of irreversible fractal
growth, and it is the basic point of the FST method. In
the usual theoretical methods of statistical mechanics,
the time limit is usually eliminated in view of ergodicity.
In this respect the FST corresponds to a novel theoretical
framework that can be easily extended to all those prob-
lems in which a frozen fractal structure is generated by a
dynamical process. In this review we shall consider
several examples corresponding to both irreversible and
equilibrium dynamics.

In Sec. II we describe the properties of the prototypi-
cal fractal-growth models DLA and DBM. In Sec. III
we focus on the essential concepts of the FST approach,
while in Sec. IV we present a detailed description of the
method. In Sec. V we show how fractal structures gen-
erated by equilibrium problems can also be studied by
this method. In Sec. VI we apply the FST to simple
dynamical systems. In Sec. VII we study the problem of
the renormalization of the dynamics of DLA/DBM, and
we show the detailed application of the FST to these
models. In Sec. VIII the method is extended and applied
to other fractal growth phenomena like cluster-cluster
aggregation. In Sec. IX we discuss the relations of the
FST methods with usual path integrals and field-theory
approaches. Finally, in Sec. X, we summarize the situa-
tion and discuss possible developments.

Il. PROPERTIES OF FRACTAL-GROWTH MODELS

A. The basic models: Diffusion-limited aggregation and
dielectric breakdown model

In nature there are very many examples of structures
that show fractal properties (Mandelbrot, 1982). The
idea is to concentrate on some specific case with the hope
that theoretical concepts eventually developed for that
case could then be modified and applied to other situa-
tions. This is, for example, what has happened for the
critical properties of second-order phase transitions. For
this class of problems, a key role was played by the Ising
model that was crucial to the development of the ideas
that led to the renormalization group (Amit, 1978; Bur-
khardt and van Leeuwen, 1982). These ideas could be ex-
tended to virtually any other model.

For fractals, the first growth model based on a well-
defined physical process was diffusion-limited aggrega-
tion (DLA; Witten and Sander, 1981). This was general-
ized by the dielectric breakdown model (DBM; Niemeyer
et al., 1984), which also clarifies the mathematical nature
of the phenomenon. This model is based on an iterative
stochastic process in which the growth probability is
modulated by the electric field around the structure as
given by the solution of the Laplace equation with ap-
propriate boundary conditions. These models can ex-
plain the origin of fractal structures in a variety of pro-
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cesses like dielectric breakdown, dendritic growth, and
viscous fingers in fluids (Vicsek, 1992). In addition, there
are various other problems in which fractal patterns arise
from solutions of time-dependent differential equations
with fixed or moving boundary conditions. Often these
are studied using discretized models like cellular automa-
ta, discrete maps on lattices, or models of self-organized
criticality (SOC; Bak et al., 1987, 1988) that lead to spa-
tial and temporal intermittency. It seems reasonable that
the understanding of problems like DLA and DBM is a
necessary step in order to progress in this whole area.
For these reasons they are considered to be the prototypi-
cal fractal-growth models, analogous to the Ising model
for phase transitions. They have been studied extensively
through numerical simulations, and in this section we
briefly summarize their main properties.

DLA was first defined on a two-dimensional square lat-
tice. Given a central (seed) particle, new particles are
added one by one from a faraway region (a random point
of a large circle). A new particle performs a random
walk, and when it touches a site nearest to the initial
seed, it stops and becomes part of the aggregate. Then a
new random-walking particle is added that stops when it
touches a site that is nearest to the aggregate, and so on.
If a particle never touches the aggregate, it is eliminated
when it reaches a certain (large) distance from it. The
process can be easily generalized to any space dimension,
and it can also be defined without a lattice (off-lattice) by
assuming that particles have a certain size and by allow-
ing them to make steps of a given length in any direction.
A particle stops when it touches another particle that be-
longs to the aggregate (Meakin, 1988; Meakin and Tol-
man, 1989). The iteration of such a simple dynamical
process leads spontaneously to highly complex fractal
structures like that shown in Fig. 1 in which the colors
refer to the times at which particles were added to the ag-
gregate.

DBM can be defined by considering a square lattice in
which the central point represents an electrode with po-
tential $=0, while the second electrode with =1 con-
sists of a circle at infinity as shown in Fig. 2. The bonds
on which breakdown has already occurred (black) consti-
tute the pattern at a given time that is considered equipo-
tential. The local field around this structure is defined by
the Laplace equation

V2$=0 (2.1)
with the boundary conditions of constant potential on
the grown structure (¢=0) and a different value of the
potential (¢ =1) at infinity (faraway circle). The growth
probability p; for each bond (j) at the perimeter of the
structure is then related to the local field in the following
way:

m
SIve;l"

J

where 7 is a parameter that modulates the randomness of
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the process. After a bond is added, the grown structure
changes and so does the boundary condition for the new
probability distribution. A new bond is then added, and
so on.

For n=1, there is a close connection between DLA
and DBM, in view of the fact that a diffusion equation
with sources and sinks is identical to the DBM equations.
In this respect the DLA growth process represents a
Monte Carlo realization of the probability distribution
defined by the DBM (Pietronero and Wiesmann, 1984).
To be precise, in order for the two processes to be exactly
the same, in DLA one should let the particle reach the

aggregate and then add to it the last-visited empty site.
For 7=0, the effect of the Laplace equation is
suppressed, and one recovers one version of the Eden
model that leads to compact structures (Eden, 1961). In
this respect the DBM is particularly interesting from a
theoretical standpoint, because it generates a family of
models that range continuously from compact to fractal
structures. Apart from generalizing the DLA growth
process, the DBM illustrates the underlying mathemati-
cal properties in relation to partial differential equations
like the Laplace equation. This connection is quite
surprising, because usually a Laplace equation produces

FIG. 1. DLA/DBM cluster (off-lattice) with radial boundary conditions. The colors of the structure refer to the aggregation time of
each particle. Note the screening effect: late (red) particles cease modifying the inner blue portion, which therefore can be considered
asymptotic. Only for this “frozen” part can fractal properties be properly defined. The contours around the structure represent equi-
potential lines for the Laplacian field. A pair of black and white stripes corresponds to a change by a factor of 10 of the potential

(courtesy of C. J. G. Evertsz and B. B. Mandelbrot).
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Outer - Electrode

FIG. 2. Iterative mathematical nature of the DBM. The
growth process corresponds to an irreversible dynamical pro-
cess with long-range correlations in both space and time. No
statistical weight can be assigned to a given configuration
without taking into account its entire history. In the circle is a
schematic of the DBM. The central point represents one of the
electrodes (¢=0), while the other electrode is given by a circle
at large distance (¢=1). The discharge pattern (black dots and
bonds) is equipotential with the central electrode (¢=0). The
dashed bonds represent the candidates for the next growth pro-
cesses, and their relative growth probabilities are proportional
to the potential gradient (local field).

smooth solutions: the potential at a given point is the
average of the potentials of the neighboring points. Here
we see instead that a stochastic growth scheme (see Fig.
2) in which probabilities are defined by Laplace equations
spontaneously drives the growth boundaries into a highly
irregular fractal shape. This is a deep mathematical
point essential for the understanding of this type of frac-
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tal.

The previous discussion refers to radial geometry that
leads to structures of the type shown in Fig. 1. One can
also define the growth process starting from a base line
and proceeding towards a faraway line with a different
potential. Three examples of this type for different values
of 7 are shown in Fig. 3. Since, in practice, the length of
the base line is finite and one uses periodic boundary con-
ditions, topologically the growth occurs on the surface of
a cylinder (Evertsz, 1989, 1990). For this geometry the
initial stage of growth (scaling regime) shows the devel-
opments of larger and larger correlations and a corre-
sponding decay of density along the H axis. When corre-
lations reach the size of the basis (b), the density remains
constant and one enters the ‘“steady-state regime” in
which fractal properties can be determined by a box-
counting method.

The two processes (radial and cylindrical) give rise to
basically similar structures; however, we shall see that
there are small but persistent differences among the
structures, and the conclusion that the differences are
due just to finite-size effects is not obvious. The cylinder
geometry offers conceptual advantages for a theoretical
discussion because it defines a unique growth direction
and it allows the independent variation of basis and
height, which, in radial geometry, are linked intrinsically.

B. The fractal dimension

The most characteristic feature of these models is that
they are intrinsically critical and give rise spontaneously
to fractal structures. We shall see, however, that, as soon
as one tries to make this statement more precise and
quantitative, a number of problems appear, some of
which are still open.

In order to discuss fractal dimension, one should make
clear that this is a property that refers to the frozen part

FIG. 3. DBM clusters grown in
a cylinder geometry with cir-
cumference L =256 and height
H=3L. The cluster on the left
corresponds to 7=0.75; the one
in the center, to n=1 (equivalent
to DLA); and the one on the
right, to 7=4 (courtesy of C. J.
G. Evertsz).
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of the structure, namely, the zone that is fixed, asymptot-
ically and that will not be modified by further growth.
For Fig. 1, for example, this zone consists essentially of
the blue parts, because one can see that the last particles
added (red) did not penetrate further into this zone. For
the cylinder case, the frozen zone consists of the entire
structure somewhat below the growing profile.

This discussion is important in clarifying the problem
of the lattice anisotropy effect that has been much debat-
ed in the literature (Meakin, 1988). For the radial
growth, if the growth process is defined on a square lat-
tice, one observes at small scales a reasonably circular
shape, while at larger scales the structure observed is
cross shaped, as shown in Fig. 4(a). If one measures frac-
tal dimension in a global sense by the mass-length ratio
(gyration radius), one observes that, until the shape is
about circular, D ~1.70, while for larger sizes and non-
circular shapes this value apparently drops to about
D ~1.5 for the largest sizes (N =10°). This result has
given rise to much discussion abut the effect of lattice an-
isotropy on the asymptotic value of fractal dimension.

In order to clarify this point, one must distinguish be-
tween the effect of lattice anisotropy on the velocity of
the growing interface that determines the overall profile
and the local fractal features that should only be mea-
sured in the frozen region within the growing interface.
If the profile is not circular and one defines the fractal di-
mension in a global way, these two effects are mixed and
the result is spurious. This implies that for noncircular
shapes, one should use only local probes to define fractal
dimension. Therefore the result D =~1.5 obtained from a
global gyration-radius analysis should not be considered
a correct determination 6f fractal dimension.

This discussion makes it clear that the overall shape of
the growing interface and the structure produced by the
growth process are two different problems. From a re-
cent analysis (Arneodo et al., 1989), one can actually
conjecture that the average growing interface of DLA
may be governed by the same equations as the interface
of the deterministic Saffman-Taylor problem that pro-
duces compact structures instead. The fractal aspect of

(a)
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the problem corresponds, instead, to the asymptotic
properties of the structure that is left behind once the
growing interface goes to infinity. Therefore it is only in
this sense that we shall discuss fractal properties in the
following.

For two-dimensional DLA, the various methods for
defining fractal dimension give the following results.

(a) Radial geometry (the data are from various authors
reviewed by Meakin and Tolman, 1989): (i) Off-lattice
(mass-radius relation): D=1.715 (N =10°). (ii) Square
lattice (circular shape; small sizes): D=1.71. (iii)
Density-density correlation: D =1.66/1.68. (iv) Box
counting  (generalized to the g¢gth moment):
D(g=0)=1.61; D(g=1)=1.65; D(g=2)=1.65. (v)
Box counting (wavelet analysis): D(—15<q <15)=1.60.

(b) Cylinder geometry (from Evertsz, 1989, 1990; Pic-
cioni, 1995): (i) Box counting (scaling regime): D =1.68.
(ii) Box counting (intersection of steady-state regime):
D=1.65. If DLA were to produce a simple fractal struc-
ture with universal properties, all these values should
coincide. To some degree they do, because the fluctua-
tions in the observed values of D are of the order of 5%,
and it is conceivable that they are due to finite-size
effects. However, these data are derived from accurate
and rather large simulations, and it is also possible that
radial and cylinder geometries lead to different correc-
tions to scaling. In fact, recent large-scale simulations
(Mandelbrot, 1992; Mandelbrot et al., 1995) suggest a
scenario in which radial DLA presents scaling correc-
tions that are related to the nonequilibrium dynamical as-
pects of the phenomenon. These scaling corrections have
a counterpart in the dynamical drift that drives the struc-
ture to an increasingly multiarmed shape. The numerical
rate of this drift can be measured quantitatively with a la-
cunarity effect specific to DLA grown in circular
geometry. It is worth observing that the value of the
fractal dimension measured for circular crosscut is the
same as that obtained for intersection sets of clusters
grown in cylindrical geometry (D =0.65). Moreover, the
value obtained does not depend upon the measurement
technique. This seems to suggest that the question of

FIG. 4. Large DLA clusters
(N =10°) for radial geometry on
> a square lattice (a) and off-lattice
5 &k ).

(b)
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universality of DLA is best addressed on the crosscut. In
fact, this is the only set that possesses an important
geometric characteristic that is independent of the
growth boundary conditions: it is always transverse to
the growth direction. Therefore it is possible that mea-
surements on this set take into account only the intrinsic
growth dynamics of the phenomenon, leaving apart the
effects induced by the geometry of the boundary condi-
tions. In addition, the fact that cylindrical DLA does
not present deviations from self-similarity is probably
due to the fact that the cylinder size is defined externally
and does not depend upon the growth process itself (Pic-
cioni, 1995).

For the DBM, the value of D as a function of the pa-
rameter 1 varies continuously from D(n=0)=2 (Eden
limit) to D =1 for large values of n [Fig. 5(b)]. Whether
this limit is reached in a smooth way for n— o or above
a finite critical value 77, remains an open question.

Until now we have discussed growth in only a two-
dimensional embedding space (d =2). Simulations have
actually been performed up to d =8 (Meakin and Tol-
man, 1989), and the results are shown in Fig. 5(a). These
data are compared with the dimension of the self-
repelling polymer that is an equilibrium problem of stan-
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FIG. 5. Initial label: (a) Fractal dimension of DLA clusters as
a function of the dimension of the embedding Euclidean space.
Note the absence of an upper critical dimension as shown in-
stead by the exponents of the self-avoiding walk. (b) Fractal di-
mension for DBM clusters in two dimensions as a function of
the parameter 7.
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dard nature with an upper critical dimension d,=4. In
this respect, one can say that DLA does not show an
upper critical dimension. This can also be understood
from the fact that the long-range coupling due to the La-
place equation is always relevant in any dimension.

For large values of d, there is evidence that the limit-
ing behavior D=d —1 is approached from above. This
can be understood from a simple argument due to Ball
and Witten (1984). For a cluster of dimension D, the
number of particles N is related to the radius R by

N=~R?. (2.3)

The growing interface is characterized by N’ points,

~aN
~ dR

In order for growth to occur, the incoming random
walk should have a nonzero probability of hitting the in-
terface. The points visited by a random walk have a di-
mension d, =2. The condition of growth corresponds
therefore to the condition that the intersection dimension
d; between the random walk and the interface be posi-
tive.

This leads to

dy=d,+(D—1)—d >0 2.5)

N’ ~RP1, (2.4)

and therefore
D>d—1. (2.6)

In addition to the determination of the fractal dimen-
sion of the original DLA and DBM models, there have
been many other studies that have also considered
different properties of the original models or variations
and generalizations of these models. The main results are
the following.

(a) Noise reduction. In the noise-reduction generaliza-
tion of the DLA and DBM growth rules, a bond is grown
only after having been hit by S particles (Kertesz and
Vicsek, 1986; Nittman and Stanley, 1986). A counter is
raised by 1 each time a particle hits the respective bond.
When a counter reaches the value S, the corresponding
bond is occupied and the new perimeter bonds near this
one start with a counter equal to zero. The effect of this
procedure is a systematic reduction of the noise. In fact,
the introduction of the parameter S corresponds to
averaging over several realizations of the same stochastic
process. This reduces the fluctuations and introduces,
through the counters, a memory effect. For a finite value
of S, the branches acquire a finite thickness, while for
S — 0, screening is suppressed and the structure be-
comes compact.

Initially, the effect of the noise-reduction parameter
was studied mainly with respect to the overall shape of
the cluster or with respect to the anisotropy problem in a
square lattice (Eckmann et al., 1989, 1990). This led to
the conjecture that a large value of S might accelerate the
approach to the asymptotic behavior with respect to
these properties. In relation to the fractal properties, the
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situation is instead the following (Moukarzel, 1992): (i)
The asymptotic value of the fractal dimension D does not
change for any finite value of S. (ii) Since for S >1 the
branches acquire a certain thickness &, there is a cross-
over from a compact structure for R <& to a fractal
structure for R >>§&.

Therefore the intrinsic fractal properties are universal
with respect to the value of S. However, for a large value
of S, these properties develop only above a certain size.

(b) Anisotropy and self-affinity. A simple inspection of
the structures generated by DLA and the DBM makes
evident that these structures are connected in the growth
direction, but not connected in the perpendicular direc-
tion. This gives rise to different correlation properties in
the two directions (Meakin and Tolman, 1989). Detailed
studies for the cylinder geometry show, in addition, that
the nature of the clusters may be self-affine (Evertsz,
1989, 1990). Of course, in such a case, it is also possible
to define a fractal dimension, but its meaning is not as
general as in the case of isotropic scaling. These effects
are a warning (Mandelbrot, 1992; Mandelbrot et al.,
1995) that the structure has fractal properties, but not of
the simplest type. This may actually be a possible reason
for the discrepancies observed in the value of D as a func-
tion of geometry and method of analysis.

(c) Multifractality. This is a generalization of the con-
cept of fractal in which one considers the possibility that
a continuum distribution of different singularities may be
present instead of a single type as in the case of a simple
fractal (Paladin and Vulpiani, 1987). This extension,
however, does not cover other possible complications like
self-affinity. Multifractals arise naturally in self-similar
distributions even as given from a simple multiplicative
process. Clearly, the growth probability in DLA and the
DBM is a distribution with some sort of self-similar
properties, so it was natural to expect multifractal
behavior. It seems, however, that, even if multifractals
appear to describe some features of this probability dis-
tribution, they do not provide a complete description,
nor is it evident what may be the advantage in looking at
the problem from this perspective. In particular, the por-
tion of the spectrum corresponding to positive values of
the ¢ moment appears to be relatively well behaved. On
the other hand, various pathologies have been observed
for negative values of g, and the situation is at the mo-
ment rather controversial (Coniglio et al., 1986; Bohr
et al., 1988; Blumenfeld and Aharony, 1989; Mandelbrot
and Evertsz, 1990; Schwarzer et al., 1990; Marsili and
Pietronero, 1991).

A particularly relevant point of the multifractal spec-
trum is the exponent a,, corresponding to the strongest
singularity. On the basis of simple scaling arguments, it
is possible to conjecture a relation between a,;, and the
fractal dimension D of the entire cluster (Turkevich and
Scher, 1985),

D=1+ag, - 2.7)

This relation appears to be in good agreement with nu-
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merical results on DLA.

(d) Multiscaling. It has been conjectured that the local
fractal dimension for a large but finite cluster might vary
continuously from the bulk value to a lower value when
approaching the interface. The situation in this respect is
not yet conclusive (Coniglio and Zannetti, 1990; Ossad-
nik, 1992).

C. Essential features of the problem

Here we provide a short description of the crucial ele-
ments that should be addressed when formulating a
theoretical scheme.

(a) Irreversible dynamical process. In Fig. 2 we showed
schematically the mathematical nature of the growth
process. It consists of the iteration of an irreversible sto-
chastic process with long-range couplings in both space
and time. It is not possible to assign a statistical weight
to a configuration without considering explicitly its
dynamical evolution, i.e., its complete history. This im-
plies that the dynamical effects should be explicitly con-
sidered. The discrete structure of the process appears to
be an essential element, and it is not clear how to define a
continuum limit for such a process.

(b) Self-organized criticality. The system evolves spon-
taneously towards a fractal structure without the fine-
tuning of any parameter. In this respect the asymptotic
structure is an attractor for the dynamics. This situation
is basically different from the usual equilibrium critical
phenomena in which the fixed point is repulsive and the
fine-tuning of a critical parameter is necessary.

(c) Screening and freezing. The screening effects due to
the Laplace equation appear to be essential to generate
empty regions that will never be filled asymptotically and
will lead to the fractal structure. For this reason the
fractal properties become well defined only in those re-
gions of the structure that are asymptotically frozen,
namely, that will not continue to be modified by further
growth because they are completely screened.

(d) Universality. These growth processes show well-
defined universal fractal properties with respect to a
number of possible variations: lattice topology, site or
bond growth, presence or absence of a diagonal bond,
different initial configurations, and, in general, all small-
scale modifications of the process.

For the DBM, fractal dimension depends explicitly on
the parameter 7, and it is not universal in this respect.
The fractal properties appear to be relatively universal
with respect to radial or cylinder growth geometry.
However, as we have discussed, this point requires a
more detailed clarification because small but persistent
discrepancies are present.

The situation is different for the morphological proper-
ties that refer to the overall shape of the structure. These
are much less universal than the local fractal properties
and are strongly modified by the lattice topology and
various other small-scale modifications. This reduced de-
gree of universality with respect to critical phenomena
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should be considered an interesting point, because, after
all, the fractal structures one observes in nature are quite
various.

D. Why usual methods are problematic

The fact that these growth models produce structures
with self-similar properties raised the expectation that
our understanding of them could be achieved by follow-
ing the ideas developed for critical phenomena. There
are, however, important differences between these two
classes of problems, and the application of
renormalization-group (RG) ideas to fractal growth
turned out to be rather problematic. The main reasons
for this situation are the following.

(a) Field theory framework. The usual starting point in
a field-theory formulation of these problems is the
diffusive free field. This means that one looks at the
problem essentially as a random walk plus some interac-
tions. In this way it is possible to formally write down
the action of a field theory for DLA (Parisi and Zhang,
1985; Peliti, 1985). However, from this point it is impos-
sible to proceed in a constructive way, because the cou-
pling that characterizes the interactions diverges with
length scale in any dimension and it leads to a hopeless
strong-interaction problem. This implies that there is no
length scale in any dimension and it leads to a hopeless
strong-interaction problem. This implies that there is no
upper critical dimension and that the theory is unrenor-
malizable. In addition, if one were to consider a generali-
zation to the DBM with 571, this would lead to a non-
cluster aggregation, is not even conceivable from a field-
theory point of view. As with other problems of this
type, it is possible to improve the situation through lat-
tice regularization. In this way one treats the interaction
exactly, and the perturbation theory is defined by an ap-
propriate sum of lattice path integrals. We shall see that
the fixed-scale transformation operates exactly along
these lines.

(b) Real-space renormalization group. The standard
real-space renormalization group (RSRG) leads to con-
ceptual problems for fractal growth. For the RSRG, one
usually considers a box and integrates over the internal
degrees of freedom in order to define the renormalized
variables. If the variables correspond to the asymptotic
occupation of the sites, this approach will not work for
irreversible fractal growth. In fact, in DLA and the
DBM, the asymptotic occupation of a given portion of
space can only be defined when the growing interface
goes to infinity. Therefore one must also take into ac-
count faraway external processes. For these reasons, the
attempts to describe DLA using the usual RSRG ap-
proach, by integrating over the internal degrees of free-
dom (Gould et al., 1983), give rise to basic problems. A
more detailed discussion of these can be found in
Pietronero et al. (1988b). This criticism does not apply
to Nagatani’s (1987a, 1987b) RG approach, also elaborat-
ed upon by Wang et al. (1989a, 1989b), which refers only
to growth probabilities and not to the asymptotic occu-
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pation of the sites. However, these methods are also
problematic because the relation to fractal dimension is
via phenomenological relations like Eq. (2.7), and the re-
normalization of the growth probabilities does not cap-
ture, in our opinion, the essential dynamics of the process
and its self-organized nature (see Sec. VII). Because of
these reasons, they cannot distinguish between fractal
and nonfractal structures, in the sense that they cannot
show, for instance, that the Eden model (DBM with
71=0) leads to compact structures.

(c) Mean-field and Flory-type approaches. There have
been various attempts to define mean-field or Flory-type
approaches for DLA (Muthukumar, 1983; Honda et al.,
1986). The situation is, in this respect, rather confusing.
As we have seen, one of the main problems is in identify-
ing the relevant fields; in addition, the proper definition
of a continuum limit is not trivial. Roughly speaking,
one can consider the mean-field limit as the one in which
fluctuations have been eliminated from the problem.
There are various ways to eliminate fluctuations; and in
all the cases, this has the effect of destroying fractal prop-
erties, leading to a compact object. The most sensible
mean-field approach seems to lead only to the relation
D =dj this does not appear terribly interesting and can be
easily derived in several ways. On the other hand, this
situation can be understood in the following way. If we
consider that the generation of a fractal structure corre-
sponds to the appearance of anomalous dimensions at the
critical point, this corresponds in some sense to a non-
trivial 7 exponent in critical phenomena (Amit, 1978).
Mean-field as well as Flory-like methods can deal with
exponents that correspond to the approach to the critical
point but not with the anomalous dimensions, because
they always imply that 7=0. It seems therefore that
fractal properties appear only as deviations from mean-
field behavior. In this respect it should be noted that the
claimed mean-field expressions that lead to nontrivial
values of D have been derived with ad hoc assumptions
whose meaning is not clear (Muthukmar, 1983; Honda
et al., 1986).

lll. THE FIXED-SCALE TRANSFORMATION STRATEGY
AND ITS BASIC IDEAS

From a theoretical standpoint, the problem of irrever-
sible fractal growth consists in the calculation of the
correlation function G(r,r,,t) which refers to the prob-
ability of occupation of the points 7, and r, after a total
time t for the growth process (Fig. 6). This time is
defined by the total number of particles or bonds added
to the structure. Actually, the fractal properties become
well defined only asymptotically with respect to the two
following limits.

(a) Asymptotic time limit (t — o ). This means that one
should consider regions of the system that are very far
from the growing interface and that will not continue to
be modified by further growth (freezing condition).

(b) Large. scale limit (r— o). This implies that one
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FIG. 6. The fractal exponent is related to the asymptotic corre-
lations of the points of the structure once the growing interface
is infinitely far away (¢ — o ; “frozen structure”).

should consider scales at which eventual scale-invariant

properties become well defined.
For a fractal structure, one would expect the following
behavior:
lim  Lm G(r,ryt)=g(ri—ry)~|ri—r,| 7472

|ry—rl>wtsw»

(3.1)

where D is the fractal dimension and d is the embedding
Euclidean dimension.

Following the usual theoretical approaches, one would
attempt to consider these two limits together. However,
those approaches were developed for equilibrium prob-
lems, in which the time evolution is replaced by the sum
over the static configurations, and one has, in practice,
only the large scale limit. This is, then, performed by re-
normalization schemes of various types. For the reasons
presented in Sec. II, the problem posed by Eq. (3.1) does
not seem treatable with the usual methods.

Given this situation, we have tried to formulate a
theoretical framework of a novel type, the fixed-scale
transformation, that focuses explicitly on irreversible
dynamical evolution. The FST method has been im-
proved and clarified in the past few years, and it is now
able to treat in a rather systematic way the class of prob-
lems of irreversible fractal growth as well as several oth-
ers.

The basic point of the FST method is to treat separate-
Iy the two limits z— o and r— . For the asymptotic
time limit, it is very important to describe accurately the
convergence of the asymptotic structure. We shall see in
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Sec. IV that this convergence is crucial in order to un-
derstand whether the structure is fractal or compact. In
this way we can compute the nearest-neighbor correla-
tions between pairs of sites as given by the appropriate
lattice path integrals, shown schematically in Fig. 7. The
large-scale limit (»— o0 ) is then performed by interpret-
ing our “‘sites” as coarse-grained cells of a generic size.
This can be done if one is able to identify scale-invariant
dynamics (growth rules) for our problem. The use of
scale-invariant dynamics in the FST implies that the re-
sulting nearest-neighbor correlation refers to coarse-
grained cells of any size, and from these one can then ob-
tain the fractal dimension.

Let us first consider the problem of the asymptotic
time limit. We start by defining the nearest-neighbor
(NN) pair correlations at the minimal scale. Consider,
for example, the original DBM growth rules. In order to
define the NN correlations, we must consider a pair of
sites and study the possible configurations of this pair
that occur in the asymptotic structure generated by the
growth process. We are interested in conditional proba-
bilities, so one site of each pair will certainly be occupied
(black). This leads to only two possibilities: a
configuration of type 1 with an occupied (black) and an
empty (white) site [see (a) in Fig. 7], and a configuration
of type 2 with both sites occupied [black; see (b) in Fig.
7). The probabilities for the occurrence of these

(a) (b)

FIG. 7. Schematic for the computation of the pair correlation
induced by growth processes. Given an occupied site, we ask
for the occupation probability of the nearest-neighbor one.
This should be done by evaluating the weight of all the growth
processes that do or do not lead to the occupation of this site.
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configurations are defined as C; and C,, respectively. In
practice, instead of following the scheme illustrated in
Fig. 7, it is more convenient to consider the conditional
probabilities between pairs of sites. In order to compute
these probabilities, one must consider the probability
M;; (i,j=1,2) that a pair configuration of type i will be
followed, in the growth direction (k), by a pair
configuration of type j (Fig. 8). This leads to a transfer-
matrix problem whose vector C contains the probabilities
for the different pair configurations.

The matrix elements M;; can be computed by lattice
path integrals over the possible growth processes that
correspond to the configurations i and j. How to do this
in practice will be discussed in Secs. IV and VIII. Note
that the configurations considered should correspond to
the asymptotic (frozen) structure. This implies that the
lattice path integrals should be extended until the grow-

B (Growth interface)
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FIG. 8. A crucial concept in the FST method is the nearest-
neighbor correlation between cells of a given scale 5. One can
study this problem by considering the probability that a cell of
type i (a) will be followed, in the growth direction (k), by a cell
of type j (b). These probabilities are defined by lattice path in-
tegrals corresponding to the growth dynamics at a given scale
(b). If one uses a scale-invariant growth dynamics, the above
correlations can be extended to coarse-grained cells of any size,
and the fractal dimension can be computed.
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ing interface is far enough away from these
configurations, so that they can be considered asymptotic
(long-time limit).

In order to make this calculation quantitatively accu-
rate, it is important to consider also the possible environ-
ments (boundary conditions) outside the growing column,
defined by the dashed lines in Fig. 8. This implies that
the matrix elements M ; should be replaced by weighted
averages (see Sec. IV), in which a parameter A, charac-
terizes the various possible boundary conditions and
P(A,) is the corresponding probability that will depend
on C. This leads to a more complex nonlinear transfor-
mation whose fixed point can be determined analytically
using suitable truncation schemes (see Sec. IV).

Strictly speaking, the FST scheme we have been dis-
cussing allows for the computation of NN pair correla-
tions at the minimal scale only. However, were it possi-
ble to interpret out “sites” as coarse-grained cells and to
use growth rules that are scale invariant, as shown in the
bottom of Fig. 8, then the fixed-point probabilities
(Cy,C,) would characterize the correlations between
coarse-grained cells of any size. This means that one
would obtain exactly the same process with the same
probabilities at different scales. This would allow us to
perform the large-scale limit (b— ), because long-
range correlations would be described by NN pair corre-
lations of large cells, and from these the fractal dimen-
sion is computed.

In order to perform the important step corresponding
to the large-scale limit, one must be able to control how
the growth rules change under a scale transformation
(Fig. 9). DLA and the DBM are intrinsically critical in
the sense that their dynamics evolves into the scale-
invariant one without the tuning of any parameter.
Therefore the question of the universality and scale-
invariant properties of DLA and the DBM is related to
their effective asymptotic dynamics. In addition, the
knowledge of this effective dynamics is one of the key
points in the understanding of why these models give rise
to self-organized fractal structures. This problem is, in
general, very complex due to the large number (in princi-

>

FIG. 9. Simple scheme showing the nature of the renormaliza-
tion process for the growth rules.
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ple, infinite) of parameters that may appear in the dy-
namics. In practice, however, one can fix a subset of pa-
rameters and study their evolution under scale change.
This allows us to understand some general symmetry
properties that belong to scale-invariant dynamics: (i)
growth probabilities should be defined per bond. If one
starts with site probabilities, these evolve into bond-type
upon scale transformation. (ii) An eventual probability
assigned to a diagonal bond disappears under scale
change (see Sec. VII.A). Within the complex space of
growth rules (Fig. 10), the FST framework points, how-
ever, to the essential concepts: Fractals can be generated
only if screening persists in the scale-invariant regime
(Sec. IV). Note that the presence of screening due to the
Laplace equation in the original growth rules does not
guarantee that a similar effect persists for coarse-grained
variables (Fig. 9). In fact, if one studies the growth rules
for a coarse-grained cell, a problem of noise reduction
naturally appears. The larger the cell, the larger will be
the number of particles (bonds) necessary to span it.
Naively, therefore, one could expect that, asymptotically,
the effective noise-reduction parameter S diverges. This
would eliminate screening effects and lead to a compact
structure. Therefore the key feature of the asymptotic
growth rules is the identification of the fixed-point noise-
reduction parameter.

In Sec. VII we discuss a renormalization scheme for
the noise-reduction parameter S that allows us to address
the problem of the large-scale limit (» — ). The main
result is that the fixed-point noise-reduction parameter
turns out to be of order unity (S*=2.4) with an attrac-
tive fixed point. These results clarify therefore the self-
organized critical nature of DLA patterns, in contrast, for

FIG. 10. Schematic showing the space of growth rules (G.R.).
Point A corresponds to the original DLA/DBM growth rules.
Under an ideal renormalization, this point would flow to point
C, which represents the “exact” scale-invariant growth rules.
Our scheme consists in renormalizing the growth rules along
the line defined by the noise-reduction parameter S. The idea is
that the fixed point obtained in this way (point B) is a good ap-
proximation to the “exact” one (point C). Line P corresponds
to a generalization of the growth rules that goes outside the
correct basin of attraction.
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example, to percolation, in which the fixed point p, is
repulsive. This is due to the fact that, under scale
change, noise is automatically generated by the dynamics
of the system, as discussed in detail in Sec. VII. In addi-
tion, the fact that the value of S* is close to 1 shows that
screening is asymptotically preserved and that the
minimal-scale growth rules are already rather close to the
asymptotic ones.

In order to illustrate the basic philosophy of the FST
method, it is particularly simple and instructive to con-
sider its application to the percolating cluster interpreted
as a fractal-growth process (Pietronero and Stella, 1990).
The first step is to define the scale-invariant- dynamics.
This can easily be done by a renormalization procedure
like the one shown in Fig. 9.

As we shall see in Sec. V.B, the scale-invariant growth
probability is defined by the (nonuniversal) critical pa-
rameter p,=0.5. From a FST standpoint, this corre-
sponds to the scale-invariant dynamics. One can then
proceed to define the fixed point with respect to dynami-
cal evolution. From the fixed point of this new transfor-
mation, fractal dimension is finally obtained. The de-
tailed implementation of this scheme will be discussed
later (Sec. IV).

In the present example, one determines p, by a simple
renormalization method. The usual way to compute the
exponents would be by differentiating this expression at
the fixed point. The FST works in a.different way be-
cause it allows us to compute the universal fractal dimen-
sion D directly from the nonuniversal value of the critical
parameter p.. For fractal structures corresponding to
usual critical phenomena, we have, therefore, the follow-
ing conceptual scheme.

P T,
Value of the nonuniversal
critical parameter

D (fractal dimension)
==FST= {Universal critical
exponent

This scheme is particularly suitable for irreversible frac-
tal growth because it allows us to treat problems that are
impossible within the usual RG methods.

IV. BASIC CONCEPTS

In this section we describe in detail the formulation of
the fixed-scale transformation method. Our discussion
does not refer to the application to a particular model,
and we shall be as general as possible. However, one
should keep in mind that the FST method has been for-
mulated for irreversible-Laplacian-growth models, and
some concepts can be better established referring to
them. Here we shall focus mainly on the way to evaluate
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the asymptotic NN pair-correlation functions with a suit-
able lattice path integral corresponding to the
irreversible-growth process. This provides a general
framework for calculating the fractal dimension and the
anomalous exponents once the scale-invariant growth
rule of the model is known.

A. Pair-correlation configurations
and the fractal dimension

1. Characterization of fractal structures with a
fine-graining procedure

When considering a fractal structure, it is convenient
to focus on a lower-dimensional subset. For a fractal
structure of dimension D embedded in two dimensions, a
convenient choice is the intersection set with a line per-
pendicular to the growth direction [see Fig. 11(a)]. The
basic result for the intersection of fractal structure is the
additivity of codimensions (Mandelbrot, 1974).
Specifically, by using the definition of fractal dimension,
we can prove that the intersection set is also a fractal and
that its dimension is D’=D —1. For homogeneous self-
similar structures, the intersection can be done in any
direction. In the case of structure generated by a growth
process, for reasons that will become clear in the follow-
ing, the intersection must be perpendicular to the growth
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FIG. 11. Definition of the intersection set in the case of the
two-dimensional DLA; in the lower part we show a schematic
of the process of box covering for the set of points given by the
intersection of the fractal structure with a line.
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direction. We can analyze the set of points generated by
the intersection using a procedure called box covering. A
box is characterized by a black dot if it contains some
points belonging to the structure. Conversely, a box is
characterized by a white dot if it does not contain any
point of the structure. Note that in Fig. 11 we do not
consider the two-dimensional nature of the cells. Howev-
er, in the sense of the renormalized growth process, the
cells should be squares. First, we consider a box of the
size of our maximum length scale along the intersection
[Fig. 11(b)]. This box contains the whole set of points;
so it is black. We then divide this box into two sub-
boxes, considering length scales half of the previous
length. As this subdivision process continues [Fig. 11(b)],
white boxes begin to appear, corresponding to regions in
which there is no part of the structure. Then the process
of subdivision continues only for the occupied boxes.
Clearly, voids (empty boxes) are generated at all scales if
the structure is fractal. This way of describing the inter-
section set can be thought of as, a “lattice-gas” descrip-
tion, with “occupied” and “empty” sites (Erzan, 1992).
In fact, we can associate each box of size [ with a lattice-
gas variable defined as

1 (occupied)

0 (empty) . @.1)

Clearly, one can obtain the fractal dimension D by the
scale-invariant statistics of this lattice gas. To look at the
scale-invariant statistics of this set, we focus on the ele-
mentary process by which a black (occupied) box is divid-
ed into two, as observed in Fig. 12. We start by defining
the NN pair-correlation configurations along the inter-
section. For the intersection set of Fig. 11, we must con-
sider all the possible configurations of site pairs generated
by the growth process, and thus the two following proba-
bilities: (i) a configuration of type 1 with an occupied
(black) site and an empty (white) site; and (ii) a
configuration of type 2 with both sites occupied (black).

The probabilities of occurrence of these configurations
are then defined by C, and C,, respectively, with the nor-
malization requirement C;+C,=1. These probabilities,
strictly speaking, characterize only the NN transverse
correlation at a given scale. However, where it is possi-
ble to interpret our sites as coarse-grained cells and use

[e]

\Sz

>
[e]e]

FIG. 12.. Elementary process of fine graining for a box that
contains some elements of the set. These configurations also
define the nearest-neighbors sites pair-correlation function.
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the scale-invariant dynamics, the resulting scale-invariant
C; would then characterize correlation between cells of
any size. In such a situation our pairs of cells of variable
sizes correspond to the generators of the box-covering
process of the intersection set, whose scale-invariant
probabilities of fragmentation are given by the same C;.
In this case, it is easy to show that, in the asymptotic lim-
it, the number of occupied boxes at scale / /2 can be re-
lated to the number at scale /. In fact, the average num-
ber of black sub-boxes that appear at the next level of fine
graining from a black box is

(n)=3 n,C;=C,+2C, 4.2)
and then
N(/2)=N){n) . (4.3)

This means that for each iteration of the fine-graining
process the number of occupied boxes increases on aver-
age by a factor (n). It is easy, therefore, to show that
the (box-counting) fractal dimension of the intersection
set is

r— in{n)

n2 4.4)

and that the fractal dimension of our original structure is
directly related to the value C;, C, by

In(C,+2C,)
R

=D'+1=1
D In2

(4.5)

The problem of the calculation of the fractal dimension
is then shifted to the calculation of the asymptotic distri-
bution {C;}. Fixed-scale transformation will provide a
systematic way to evaluate the C;’s considering the gen-
erators of the fragmentation process as the basic dia-
grams of the dynamics of the system.

Finally, it is important to note that all the previous
definitions and formulas can be extended to more com-
plex fragmentation processes or intersections, as in the
case of the intersection for fractal structure embedded in
three dimensions (Vespignani and Pietronero, 1991).

2. Void distribution

A complete description of the intersection set defined
in the previous section also requires a characterization of
the empty segments of Fig. 11. These correspond to the
voids between adjacent branches of the fractal structure.
It is convenient to introduce P(A), defined as the condi-
tional probability that a given occupied box on the inter-
section will be neighbored on the right by a void of size
A. Here we derive an explicit relation between the distri-
bution C,,C, of the elementary diagrams of the fine-
graining process and the distribution P(A). The connec-
tion between C; and P(A) can be made exact only by as-
suming that the C; correspond to the generators of a non-
correlated fine-graining process.
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In principle, however, it is also possible to generalize
the method to a fragmentation process that depends on
the environment (Siebesma et al., 1990).

The exact result for uncorrelated fragmentation is
given in an iterative form (Tremblay and Siebesma, 1989):

C2
PA=0)= e (4.62)
- - —l =
PO=21+ D=5t PO, (4.6b)
pO=21= L pa=n+ A=Y b
41+C,) 41+C,) ’
(4.6¢)

In order to derive Eqs. (4.6), it is necessary to intro-
duce a minimal length scale b defined by the size of the
finest structures we intend to describe. Note that this
does not really introduce a cutoff, because b drops out of
the final expressions. Given the structure of the set used,
it is convenient to define lengths as

A, =2" (n=0,1,2,...), @7

where the largest value of n is given by the upper cutoff
length in the system. Looking at Fig. 11, one may be
tempted to consider separately each stage of the fine-
graining process and see how many void segments of
given length appear at each step. To do so would be in-
correct because, if in the end several white segments of
different sizes are adjacent, they would be computed as
several different A’s, while, indeed, they correspond to a
single void whose size is of the order of the largest among
these segments. Therefore, in order to compute the void
distribution, it is necessary to consider all possible corre-
lations between the various steps of the fine-graining pro-
cedure. In this respect it is convenient to start at the
finest level and consider a coarse-graining process. In
Fig. 11, this corresponds to starting from the lowest level
of fine graining in which a black box is of linear size b
and going up level by level.

By going up a single level, one can see that each black
box of size b is grouped together with another black or
white box of size b to form a black box of length 2b at the
next level of coarse graining. This process of pairing can
involve with equal probability 1/2 the box to the right or
the left of the considered one, as shown in Fig. 13. The
probability is the same because the segments defined by
the process of coarse graining are independent with
respect to the occupied points of the structure. These
processes lead to pairs of adjacent cells that correspond
to a configuration of type 1 or type 2. In the following
we shall refer to these processes as “left” or “right box-
ing” (Fig. 13).

We begin by calculating P(A=0), namely, the proba-
bility that an occupied box of size b will be neighbored at
the right by another occupied box. With probability 1/2,
the first boxing process will occur on the right side. In
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this case one need only to require that the resulting box-
ing configuration be of type 2. This will be equal to the
conditional probability of having a cell of type 2 given a
black site, i.e., C,/(C,+1C,). If the first boxing is in-
stead on the left, we must consider the next level of
coarse graining. If this second boxing process occurs on
the right, we must require the configuration to be of type

rZ%CZ/(Cz"‘%Cl)

,.._1_____.(';2____

7 (C,+1iC))
I

11

where we identify / or r as the left or right boxing, respec-
tively. Summing up all the terms of the probability tree,
we obtain the series

1

PN | C,
P(A=0)=—= C2+ECI

2 %(cl+c2)§
(1+iCc,(C,+1Cy)

1
2

(4.9)

which corresponds to Eq. (4.6a).

Let us now focus on the recursive relation (4.6b). We
consider the probability P(A=(2/+1)b) that corre-
sponds to the conditional probability that a given occu-
pied box of size b will be neighbored on the right by a
void of size A=(2/+1)b. This situation is depicted in
Fig. 14. Suppose that the first boxing process for the
given structure occurs on the right side. The boxing
configuration at this level of coarse graining is shown in
Fig. 14(a). The boxing configuration is given in this case
by an occupied box of size 2b, neighbored by ! empty
boxes of size 2b. The probability of this boxing
configuration is then P(A'=1[), where A' means that the
voids are measured on the length scale 2b. In addition,
we must require that the left pair of the boxing

. RIGHT -BOXING

. LEFT-BOXING

FIG. 13. Association of a second box to a given black box,
which can happen on either left or right with equal probability.
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2 [with probability C,/(C,+1C,)]. In addition, we
must require the left side of the right pair of this boxing
configuration to be a black box. This produces, there-
fore, a multiplicative factor (C,+1C;). On the con-
trary, if the second boxing is on the left, we must go on
the next level of coarse graining, and so on. At the end
of this process, one obtains a probability tree of type

'(%Cl +C2)

G

a2 2
", +ic,) Gt

l:

O

(4.8)

configuration have the right site empty, conditional to
the other site’s being occupied, and that the left side of
the right pair be occupied. This produces, therefore, the
multiplicative factor +C,/(C,+1C,) and 1C,+C,, re-
spectively. When the first boxing is instead left, the re-
sulting boxing configuration will be as that shown in Fig.
14(b). The probability of this boxing configuration is
again P(A'=1), with a multiplicative factor ;C, given by
the condition that the right pair have the left site empty
and the right site be occupied. Considering that each
boxing process will occur with probability 1, we have

¢,
2

From the scale invariance of the distribution, we have
P(A=I1)=P(A'=1), recovering Eq. (4.6b).

We can now pursue the same approach to calculate the
recursive relation (4.6¢c) for P(A=21). If the first boxing
occurs on the right side, the boxing configuration with
cell of size 2b will be as that depicted in Fig. 15(a). The
distance between the left and the right pair is of / —1
empty boxes of size 2b. The probability of this boxing
configuration is P(A’=[—1) multiplied by the factor ris-
ing from the condition on the right and left pair, i.e.,
Lc?/(C,+1C)). If the first boxing occurs instead on
the left side, the boxing configuration will be formed by [
empty boxes of size 2b with probability P(A'=I). See
Fig. 15(b). In addition, we have the multiplicative factor -
1C, given by the requirement on the fine structure of the
right pair. Summing up the two boxing processes, we ob-
tain

P(A=2]+1)=

P(A'=1). (4.10)

(1—C,)
P(A=2)=——"P(\'=I)
+ (I_CZ)ZP A=I
WiTe, PW=1-1, 4.11)
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left boxing

FIG. 14. Boxing processes in-
volved in the calculation of the

le]Jo]o ole]

and, using the scale invariance of the P(A), we recover
Eq. (4.6c).

With these recursive relations, one can compute P(A)
for any A, obtaining the complete void distribution as a
function of the C,C, of the basic diagrams used in the
characterization of the intersection set. It is easy to
check that the integrated void distribution has the ex-
pected behavior for a fractal structure (Mandelbrot,
1982)

P(A= A)=FA™?, 4.12)

where F is the lacunarity and D’ is the fractal dimension
of the intersection set.

B. The fixed-scale transformation

We have seen that both the fractal dimension D and
the void distribution of a given fractal structure can be
related to the distribution {C;} of the configurations of
the NN pair-correlation function (i.e., the generators of
the fine-graining process for the intersection set), provid-
ed that these hold for boxes of arbitrary sites. The basic
problem is to compute the pair correlations induced by
the growth processes corresponding to the considered
model. Let us first consider the problem at the minimal
scale. Considering a pair of sites under the condition
that one of the two sites be part of the structure, we ask
for the probability that the neighboring site will also be
part of the structure. In practice, we should consider all
the growth processes that pass through the first site (Fig.
7), analyze their statistical weight, and sum the probabili-
ties of those paths that also occupy the second point.
This would lead to

il

= Sw.
{a}

C, (4.13)

left boxing

__1Io

<l

o5
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right boxing conditional probabilities that a
given occupied box of size b will
=T o y— be neighbored at the right by a
[. | olo | ololo void of size A=(2I+1)b.

L]l

where the index a runs over all possible growth processes
of lattice path integrals, and the primed sum in the
numerator is restricted only to those paths that lead to
the occupation of both sites, as the one in Fig. 7(b).

In the form of Eq. (4.13), the calculation can only be
performed numerically. However, one can look at this
problem in terms of a transfer matrix from a pair
configuration i to a pair configuration j along the growth
direction. Essentially, this is the fixed-scale transforma-
tion, which can be thought of as a master equation for
the {C;} under translation. Using the translational in-
variance of the structure, we search for the fixed point of
this master equation. In this way the C; can be seen as
the probability of the basic diagrams of the dynamics of
the system, and the fixed-scale transformation matrix ele-
ments (M; ;) are the conditional probabilities that, in the
asymptotic structures, a configuration of type i will be
followed by a configuration of type j in the growth direc-
tion. Therefore we can write in full generality the fixed-
scale transformation as an iterative equation of type:

{Cik+l}={Mi,j}{Cik} , (4.14)

where k denotes the order of iteration, corresponding to
the height of the intersection.

Let us now focus on the case of a structure defined in a
two-dimensional space. In this case the intersection set is
characterized by two configurations of site pairs and the

respective occurrence probabilities C,;,C,. The fixed-
scale transformation is then

Cllc+1 M, M,, C{c

Ck*'| " My, My, | |Ck (4.13)

Clearly the asymptotic invariant distribution {C*} will
be given by the fixed point of the FST. Using the rela-
tions 3;M; ;=1 and 3,C;=1, we find the fixed-point
solutions to be

FIG. 15. Boxing processes in-
volved in the calculation of the
conditional probabilities that a
given occupied box of size b will
be neighbored at the right by a
void of size A=(21)b.

right boxing

C

g
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-1
t=1+=2 4.16
% [1 M, (4.16)
and, in terms of the matrix elements, {#n ) becomes
2M,,+M
(ny="222 %l 4.17)
M,,+M,,

The above relation in combination with Egs. (4.4) and
(4.5) allows one to compute the fractal dimension D of
the structure. In the more complete treatment of Sec.
IV.E, the matrix elements M;; will be nonlinear func-
tions of the distribution C;. In this case the determina-
tion of the fixed-point distribution is more complex and
often requires the introduction of approximate schemes
of calculation.

Our definition of the matrix elements makes the FST a
sort of transfer matrix for the probability of occurrence
C,,C, of the elementary configurations. However, it is
important to note in this respect that the fractal dimen-
sion (the critical exponent) is calculated from the eigen-
vector (with eigenvalue equal to 1) and not from the ei-
genvalue of the iterative transformation (Erzan and
Pietronero, 1991). In fact, we do not use the transforma-
tion of the density under scale change, nor do we extract
from it the eigenvalue A from which D’'=InA/Inb. In
our case, we write instead a fixed-scale recursive relation
whose fixed point is directly the average conditional den-
sity {(n ) from which we can find D'=In{#n ) /Inb. Com-
paring this relation with the previous one, we have
{n)=A. The FST can then be thought of as the fixed-
point equation for the eigenvalue itself; to actually find
the scaling exponents D, we must use the fixed-point
solutions directly. It is important to note that the FST is
defined at a given scale; however, if one has scale-
invariant matrix elements, the resulting value of () will
be the same at all scales and therefore can be related to
the fractal dimension D’. In order to have such a situa-
tion, one should use scale-invariant dynamics in the cal-
culation of the matrix elements, which is not necessarily
the microscopic one, and it must be found using different
methods.

From the previous discussion, the dynamics of the sys-
tem turns out to be the essential point of the FST ap-
proach, and it is contained in the matrix elements

M, ;=prob(i—j), (4.18)

which define the conditional probability of having a cell
of type i followed by a cell of type j on the line adjacent
to it. The matrix elements can be defined by the lattice
path integrals corresponding to the various growth pro-
cesses. The basic point of this approach is that it is now
possible to assign a statistical weight for both reversible
and irreversible dynamical processes. It should be noted
that for irreversible dynamical problems, this whole con-
struction refers to the ‘“frozen structure,” which has al-
ready grown to its asymptotic state and for which no fur-
ther evolution will occur. This implies that the lattice
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path integrals should be extended until the growing inter-
face is far enough away from the starting configurations,
so that they can be considered asymptotic (large time
limit).

In order to calculate explicitly the matrix elements, we
have developed a diagrammatic graphical method. We
start with a configuration of type j and consider a
“growth” column above it. A nontrivial problem is the
choice of lateral boundary conditions for the column.
The two simplest choices are ‘“closed” and ‘“‘open”
boundary conditions. “Closed” means adopting periodic
boundary conditions. This implies that our structure will
immediately be followed by a similar structure. On the
contrary, “open” means infinite period, in the sense that
no other structure will be present. We must then consid-
er all the graphs linking the occupied sites in the initial
cell to the sites of the next cell in the column. By the or-
der of graph we mean the number of bonds occupied by
the path, excluding the trivial starting one on top of the
cel. We must also enforce the connectivity of the
column; therefore each path consists of a connected se-
quence of bonds. The matrix elements are evaluated by
summing up the weight of each graph of a given order
that leads from a configuration of type i to a
configuration of type j. In this sense the calculation of
the matrix elements corresponds to a lattice path integral
defined by the growth process.

It is very simple to assign the weight of each path, fol-
lowing the dynamical evolution inside the growth
column. Consider, for example, Fig. 16 where the start-
ing cell is of type 1. We cannot consider growth in the
initial cell because it is conditionally “frozen.” Therefore
we have only two possible paths, indicated by the arrows
of the corresponding growth process. The probabilities
of the relevant growth processes are indicated by p, ;,
where the first index, i, refers to the growth bond and the
second one, j, refers to the order of graph to which it will
give rise. Clearly, the probabilities of the growth pro-
cesses are normalized inside the column. At second or-
der, the resulting graphs are five, generated from the two

1 1
O O
: : I AT : |
OO ! o: 10 O,
' P11 | h P22 1 ' P12 sz
1 1 1 1 1
‘ O . ' O ' |
: P21 . ‘ P32 : :
® O ® O @)
1 a) b) ]
First order Second order

FIG. 16. Graphical evaluation of the matrix elements M, ; at
firt and second order. We consider all the growth processes
that define the probability for the next cell to be of type 1 or 2.
The first site on top of the initial cell will be necessarily occu-
pied, and it is already included in the starting configuration.
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first-order graphs a,b of Fig. 16. Each of them has a
weight given by the product of the probability of the
first-order path and the probability of the growth process
that leads to the corresponding second-order path. We
can now evaluate the matrix elements at the first two or-
ders. At first order, only the process p, ; will lead to the
occupation of both sites in the cell on top of the starting
one; therefore M{")=p, ;. At second order, all the paths
generated from the growth process p, ; belong to the ma-
trix element M, ,. In addition, the first-order path a of
Fig. 16 can generate a double occupation in the first
growth cell with probability p; ,. We then have at first

and second order

Mﬁ’% =p21 (4.19a)
M§{£)=PZ,1+(1—p2,l)P3,2 , (4.19b)
M(I{{) =1 _M(lg) . (4.19¢)

We can repeat all the previous steps starting with a cell
of type 2 (Fig. 17), and we obtain

M =p, +ps, , (4.20a)

M(zlé) =p,,1tp;,; T(1 —DP3,1—P2,1)P32FPan) s
(4.20b)

M =1-M, . (4.20c)

Clearly, the values of the growth probabilities p,;
necessary to define the matrix elements are defined
through the growth rules of the model considered and de-
pend upon the graph order, the boundary conditions, and
the type of starting configuration.

Apart from the problem of boundary conditions, it
should be noted that this graphical expansion for the ma-
trix elements implies the following approximations
schemes. First, we do not consider growth outside the
column above the initial cell. Such growth should be in-
cluded, though, if one is considering processes up to very
high order. Second, our definition of the growth proba-
bilities implies that some growth will certainly occur
above our initial configurations, for example, the trivial
starting one. This implication is not strictly true, be-
cause, in principle, all sites above the initial cell may
remain asymptotically empty because growth may occur

O O O

s
N

mainly outside the column. In a following section (IV.E),
we generalize the FST to include this effect and show
that it gives rise to higher-order corrections because the
environment can be properly described in terms of
boundary conditions.

The asymptotic matrix elements are those evaluated at
the infinite order:

M,;= lim M{" ;
? n— o

i 4.21)

but, in practice, the series [Egs. (4.18) and (4.19)] can be
truncated when the probability of occupation of site 2 in
Fig. 16 or 17 is virtually negligible. This is called the
freezing condition. In fact, if there is a screening effect in
the dynamical process, the higher-order terms of the
series will correspond to configurations in which site 2 of
Fig. 16 is strongly screened by growth that has occurred
at other sites. Such a fact is crucial, because it allows for
the rapid convergence of the series of M,, to a value
smaller than 1. This is a key point in the formation of
fractal structures. In fact, a convergence of the M, to a
number smaller than 1 would imply that

M, =1—M,,>0 4.22)

asymptotically. Therefore there is a finite probability
that growth will leave sites empty even asymptotically,
and, for the scale invariance of the problem, holes of all
scales will be generated. The FST then states a precise
condition for distinguishing between compact and fractal
structures. Given the growth rule of a model, it is possi-
ble, by looking at the FST matrix elements, to decide
whether it will give rise to a fractal structure. In this
sense the FST illuminates the key point for the genera-
tion of fractal structures as the screening effect of the
growth dynamics of the model.

In the case of Hamiltonian or equilibrium problems
like Ising clusters and percolation, the previous discus-
sion regarding the practical evaluation of matrix ele-
ments must be slightly changed. In fact, these problems
are not naturally defined from a dynamical standpoint.
We can follow two possible routes. The first is to define
some dynamical description of the critical clusters
(Pietronero and Stella, 1990; Erzan and Pietronero,
1990). The second is to obtain the matrix elements with

FIG. 17. Graphical evaluation
of the matrix elements M, ; at
first and second order. In this
case, too, the first site on top of
the initial cell is already includ-
ed in the starting configuration.

Second order

First order

Rev. Mod. Phys., Vol. 67, No. 3, July 1995



564 Erzan, Pietronero, and Vespignani: Fixed-scale transformation . ..

a purely geometric approach based on the equilibrium
properties of the model (Pietronero and Stella, 1990; Er-
zan, 1992; Di Stasio et al., 1994). In this last case each
connected configuration is characterized by its equilibri-
um statistical weight.

C. Fixed-scale transformation application
to the Eden model

In this section we apply the FST to the Eden model.
This application shows how the FST allows us to distin-
guish between compact and fractal structures through
the analysis of the convergence of the matrix elements.
The Eden model (Eden, 1961) is a growth model in which
every perimeter site has the same probability of growing.
This model, although it has interesting scaling behavior
for the surface, leads to compact clusters, namely, those
with dimension D =d. In this case the growth dynamic
does not have screening properties; i.e., each growth pro-
cess is equiprobable, and the series that define the FST
matrix elements are slowly converging.

Let us now show the calculation of the matrix element
M, ;. Using the graphical expansion defined in the previ-
ous section, we must consider the diagram depicted in
Fig. 18 and look at the probability that site 2 of the figure
will not be occupied during the growth process. At first
order, the probability of this occurring is 1/2, while at
second order it is 2/3. It is easy to show that at each or-
der two new possible sites of growth are added and then
at nth order the probability is n /(n +1).

We obtain therefore an upper limit for the matrix ele-
ment,

n 123

N
MEden <
11 nI;Il n+1

(4.23)

One can see, therefore, that the matrix element M, ;
converges to zero and M, ; to 1 for N— o, but only as a

nth site ‘ ’ O

i
1
]
'
]
'
1
'
'
[
1

I°Order nth Order

FIG. 18. Schematic of the growth process considered for the
analysis of the Eden limit and the calculation of Eq. (4.22).
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power law. This clearly occurs also for the matrix ele-
ments M, ; and M, ,. As a function of the order of the
process considered, the fractal dimension therefore has
the behavior

1
logN

[2—D¥ <0 , (4.24)

and we recover the exact Eden limit D =2 at infinite or-
der.

The Eden model reaches its dynamical equilibrium
very slowly because of the lack of screening in the growth
rules. This implies that one must consider growth pro-
cesses up to infinity. This fundamental point is impossi-
ble to implement in RSRG attempts where the growth is
allowed only within the considered cell, and this is the
main reason for the failure of this kind of approach.

D. Fluctuations of boundary conditions

One of the key elements of the FST approach is the ex-
plicit inclusion of boundary conditions in the evaluation
of matrix elements. This is possible mainly because the
method works at a fixed scale. For nonlocal growth
rules, in fact, the growth of a structure will be very
different if it is isolated or surrounded by other points of
the structure. This is reflected in a strong dependence on
the boundary conditions of the elementary growth pro-
cess probabilities in the graphical expansion of Sec. IV.B.
This is a new type of problem that is usually neglected in
the RSRG method, because it would be extremely
difficult to include these effects for a cell containing
several sites.

Here we show how that FST can include the fluctua-
tions of boundary conditions self-consistently using the
void distribution of Sec. IV.A. For the graphical
method, we characterize with different boundary condi-
tions the different environments in which growth takes
place. We specify these different environments by the
size A between the growing structure being considered
and the next branch which can influence it. Clearly, the
distribution for each of these situations is P(A), as given
by Eq. (4.6). In order to compute explicitly the matrix
elements, each void-gulf of size A must correspond to
boundary conditions of period A. With respect to the use
of the distribution P(A) in defining the boundary condi-
tions, there is an additional fact to consider. Our basic
configurations of the graphic expansion correspond to
pairs of sites of which at least one is black, so at the
higher level of coarse graining they correspond necessari-
ly to a black site. To this site we can directly apply the
above void distribution. However, if we ask for the prob-
ability that a pair of sites will be followed at distance A
by a black site (boundary condition of period A), the
answer is slightly more complicated. In fact, with proba-
bility P(A), the pair will be followed by another pair in
which at least one of the two sites is black. So if we con-
sider the probability that the site occupied will be that



Erzan, Pietronero, and Vespignani: Fixed-scale transformation . . . 565

closer to the considered pair, we shall require the extra
condition that the pair configuration be of type 2 or type
1, but with the occupied site on the left. Therefore the
additional factor is (C,+1C,) and the correct distribu-
tion of boundary conditions to be used in our calculation
of matrix elements is

P'(AM)=P(A(C,+1C)) . (4.25)

This discussion implies that the probability distribu-
tion for the size of voids defines the probability distribu-
tion for having a certain boundary condition in the ele-
mentary growth process. This means that the generic
matrix element M; ; should be interpreted as the convolu-
tion over all possible boundary conditions around the
growth column,

M, ;=3 P'(A,)M;,j(R,) . (4.26)
n

In this way we define an effective average dynamics
with respect to the fluctuations of boundary conditions.
An alternative way would be to define the C; for each
boundary condition and average at the end, obtaining a
self-consistent equation. We prefer to use the simplest
version [Eq. (4.26)], because this effect is already a small
correction and the results of the various methods are usu-
ally very close.

It is important to note that P’(A,) is a function of C,,
C,; therefore the iterative transformation becomes non-
linear,

al Myih,) My (e,
C, |T2P A CuC) a0 My, ] |G
4.27)

The corresponding fixed-point solution will be the fol-
lowing nonlinear equation of infinite order for C;:

SP'(A,,Ct,C3HM,,(A,)

cr=1 (4.28)

+ n
S P'(A,,C},C3 M, (A,)

M, +MS —IMP —[GMP —MS, —2M5 P+ —aM$ 412

ct=

In practice, the calculation of the series in Eq. (4.27)
would be rather laborious, because it would imply recom-
puting all the matrix elements for each value of A that
was included in the series. The simplest nontrivial
method for including the boundary-condition fluctua-
tions consists in assuming that the matrix elements will
not be too sensitive to the distance of the next branch un-
less it is very close. In this sense we can consider mainly
two different types of matrix elements. The first type is
evaluated with ‘“‘closed” boundary conditions (one cell
period) for which the next branch is very close. The
second type of matrix elements is instead calculated with
open boundary conditions (infinite period). This means
that all the intermediate matrix elements are considered
essentially identical to the second type. We have then
only two possibilities; and by calling M} and M? the
matrix elements corresponding to closed and open
boundary conditions, we obtain

M, ;=P'A=0)MZ+ > P'(A,)M . 4.29)
n0
Using Eq. (4.24), we obtain
P(=0)=—2 (4.30)
S (+icep ‘
and from the normalization condition, we have
> P'(A,)=1—P'(A=0), (4.31)
n#0
which finally gives
M. .= _20_2 cl *_C;]_ MoP (4.32)
Moo2+c, [T 24, | '

In this scheme of calculation, the fixed-point equation
is drastically simplified, because from infinite order it be-
comes just of second order. Actually, it is also possible
to write down explicitly the fixed-point solution that
reads

(4.33a)

24
A=MS$,+MS, —HMP,+MP,) .

Our approximation is based on the fact that the con-
vergence of the series that defines the matrix elements is
generally rather fast; so one has to include only a few or-
ders in the calculation. This scheme of calculus, called
open-closed, gives very good results in all two-
dimensional problems and could be improved by the in-
troduction of intermediate boundary conditions. In
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b

(4.33b)

three-dimensional problems, the approximation clearly
becomes too ‘“‘simple,” because the higher coordination
of the lattice introduces more sides on which boundary
conditions may be imposed. This calls for the introduc-
tion of different and refined schemes of calculus (Vespig-
nani and Pietronero, 1991) in order to obtain reliable re-
sults.
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The possibility of including fluctuations of boundary
conditions in the FST method allows us to reach an accu-
racy in results beyond that which is usually possible with
real-space methods. Finally, developing schemes of in-
creasing complexity, we can test the convergence of the
theoretical results in a systematic way.

E. Empty configurations: The extended fixed-scale
transformation

The starting point of the FST method is the
configurations and the related probabilities of occurrence
that define the NN pair-correlation function. This
configuration implies that at least one of the sub-boxes
must be occupied (conditional correlation). However, in
the dynamical process a given pair of sites can be fol-
lowed in the growth direction by a pair of empty sites.
So, while a pair of empty sites cannot appear in the
configurations characterizing the NN correlation, it can
appear in the dynamical processes that define the FST
transfer matrix, as shown in Fig. 19. Here we show in
detail an extended scheme of calculation that allows us to
include this effect in the FST, generalizing the approach
of the previous sections.

Let us focus on the two-dimensional case of the previ-
ous sections, where the intersection is done with a line.
We must include in the transformation the empty
configuration with the corresponding probability C,.
The new FST can be formally written as

ck+l My, My, | (Ck)
cktii=1 : : ckl. (4.34)
CitH My, M | |C5

Therefore we must introduce the matrix elements M ,
M, 3, and M, ;, which represent the conditional probabil-
ities for generating a configuration of type 3 starting
from one of type 1 and 2 and vice versa. The graphical
expansion presented in Sec. IV.B clearly excludes the
possibilities of having such configurations. In fact, we
consider only the paths and the corresponding growth
process that occur in the column above the starting cell,
and the growth probabilities are normalized within this

® O O O ® &-—@ O
4 1‘?

®-—0-—9 O [ S ® O
&»::@:fo TG e o
@ o] @ © E]Ao

FIG. 19. Completely empty configurations generated by the
dynamical process corresponding to the fixed-scale transforma-
tion. These two examples show how such a situation can occur.
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column. This clearly eliminates paths like those shown
in Fig. 19.

In practice, to include these situations, we must con-
sider columns of growth with a basis of at least four sites.
The basis consists of two or more equal cells, and one of
these is considered the cell of type i from which the prob-
abilities M, ; are defined. In this way we enlarge the
space of growth, providing more degrees of freedom for
the possible growth paths that can now generate empty
configurations.

This poses a technical problem, because it is clear that,
in order to achieve a sufficient degree of convergence
with a basis of four sites or more, one should consider
many more elementary growth processes and growth
paths than in the case of only two starting sites. In prin-
ciple, we have to go up to orders comparable to those of
the two starting sites. For example, if we use a four-sites
basis, we will compute the matrix elements up to the
eighth order; that means an average of four growth pro-
cesses per pair of starting sites, corresponding to a third
order, including the trivial one, in the two-sites calcula-
tions.

Having obtained the matrix elements of the extended
iterative transformation, we can compute the fixed point
and therefore the asymptotic distribution. However,
once having introduced the empty configurations in the
dynamics, we cannot consider them anymore directly re-
lated to those of the conditional correlation function.
Therefore the conditional correlation is characterized by
the distribution {C;}, corresponding to the probabilities
of having a configuration of type 1 or 2 conditional to the
fact that it must have at least one site occupied,

Ct
C,= lim ——, (4.352)
c—c* Cr +C;
> 1 c3
C,= lim —>— . (4.35b)

c-c* CT +C;

For example, let us consider the simplest way to com-
pute the probability that a nonempty configuration will
evolve into an empty one. This simplest way is to consid-
er the growth process on two adjacent columns (four-sites
basis) normalizing the probability of the growth paths on
the union of these two. The two starting configurations
at the basis of the two columns are taken to be equal so
that the calculation corresponds to the standard scheme
with closed boundary condition. Note that, in principle,
one could also consider different situations by consider-
ing all the possible configurations of two cells and
defining a probability distribution for these combinations.

Using this closed-boundary-conditions scheme, we ex-
clude the possibility that an empty cell will generate an
occupied one during the dynamical evolution, and we
then have definitely that M; ,=M;,=0 and M,;=1.
Using these matrix elements, we obtain a transition ma-
trix where the only ‘“relevant” state is given by C,
(Vespignani and Pietronero, 1990). This implies that the
fixed point is
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*=(Ct,C5,C3)=(0,0,1) . (4.36)

This result may appear, at first, inconsistent, but it is
perfectly reasonable. In fact, the density of a fractal
structure is asymptotically zero; so if we let the occupied
configurations compete with the empty one, the last one
will necessarily prevail. However, this is not the point we
want to address, because we are interested in the correla-
tion properties of fractal structure, and these are given by
the relative weight of the nonempty configurations. For
the closed-boundary-condition scheme, the FST has con-
stant matrix elements and can be solved exactly. In fact,
since we know the fixed point C*=(0,0, 1) for a probabii-
ity matrix, we can write in full generality

C=hy+k,h, +k,h, , 4.37)

where hy=(0,0,1) and h, is the effective eigenvector with
largest eigenvalue A,.

From this it is easy to study the effect of the iteration
process. In our definition A, >A,, and therefore after a
certain number of iterations, the contribution of h, is
negligible with respect to h,. This implies that h, corre-
sponds to the effective direction along which the iterative
transformation approaches the fixed point. Then the lim-
iting processes given by Egs. (4.35) can be properly evalu-
ated,

=~ hel
Ci=—"—++, 4.38
! he,2+he,1 ( 2
= he2
=0 4.
C2 he,2+he,1 ’ ( 38b)

where h,; is the ith component of the eigenvector.
Therefore, in the closed-boundary-condition scheme, we
can find analytically the probabilities of the fine-graining
process generators as a proper combination of com-
ponents of the eigenvectors with larger eigenvalue
(Vespignani and Pietronero, 1990). It is important to
note that this result is general and that the fractal dimen-
sion is extracted as in the standard scheme from the
eigenvectors and not from the eigenvalues of the FST.

We can now extend our treatment of the empty
configurations to the open-closed approximations. In the
open-closed approximations, the FST becomes a non-
linear transformation whose matrix elements are given by
Eq. (4.29), where the My are the matrix elements for
closed boundary conditions in which we now include the
effect of the empty configuration. The terms M} are the
matrix elements computed with open boundary condi-
tions. They are not affected by the empty configurations,
and therefore they remain the same as in the usual calcu-
lation. In this case, the fixed point is also C*=(0,0,1).
However, it is not possible to linearize the system around
the fixed point; so we have to compute the asymptotic
values of C, and C, by process of numerical iteration.

The FST extended scheme has been applied to DLA
and the DBM in two dimensions, and the effect of the in-
clusion of empty configurations for the calculation of

Rev. Mod. Phys., Vol. 67, No. 3, July 1995

fractal dimension is of the order of 1%. This confirms
the arguments that empty configurations play, in general,
a minor role. It is important to note, however, that this
effect can be studied in a quantitative way within the FST
framework, showing that the method can be systemati-
cally extended to study higher-order effects up to a
desired level.

F. Asymptotic scale-invariant dynamics

We have seen that correlation properties calculated
with the FST can be related to asymptotic properties and
fractal dimension only by using scale-invariant dynamics.
For usual critical phenomena, like percolation or Ising-
type models, the problem of the asymptotic growth rule
is relatively simple. Let us consider the case of the bond
percolation model. The scale-invariant growth rule can
be easily found through a renormalization procedure.
The asymptotic scale-invariant growth probabilities will
be given by the fixed point of the renormalization equa-
tion of the critical parameters (see Sec. V.B).

The percolation fixed point is repulsive. This means
that self-similarity in the thermodynamic limit is ensured
only at p,, and the problem is therefore not self-critical.
This discussion can be extended to all usual critical phe-
nomena in which the critical parameters are well known.
For this reason we shall begin to apply, in the next sec-
tion, the FST to Hamiltonian equilibrium problems like
percolation and Ising or Potts clusters. For Laplacian
fractal growth models, the identification of the scale-
invariant growth rule is appreciably more complex. We
show in Sec. VII how to address this question for DLA
and the DBM by deriving some general results about
asymptotic dynamics.

V. APPLICATIONS OF FIXED-SCALE
TRANSFORMATION TO HAMILTONIAN
EQUILIBRIUM PROBLEMS

A. Critical fluctuations and fractal growth

In this section we begin to show specific applications of
the FST method. We start with the fractal properties of
clusters generated by critical fluctuation of equilibrium
problems like percolation, Ising, Potts, polymer statistics,
etc. Most of the properties of these models are well
known, so they represent an important test for the FST
method. Actually, we shall also be able to compute some
exponents that were never before computed with stan-
dard methods.

The problems discussed in this section represent, there-
fore, the common area between the FST and the usual
theoretical methods. In addition, they are interesting as
relatively simple examples in which the FST approach
can be implemented in a systematic way.

For these equilibrium properties, the FST allows us to
compute the fractal dimension of the clusters generated
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exactly at the critical point. This method cannot be used
to compute the exponents that characterize the approach
to the critical point for which the renormalization group
is unavoidable. On the other hand, the FST method can
naturally be applied to irreversible-growth models like
DLA and similar ones for which the RG is instead prob-
lematic.

The basic strategy will be to turn an equilibrium prob-
lem into a dynamical fractal-growth process. One has
then to identify the scale-invariant dynamics. This con-
sists in determining the scale-invariant form of the Ham-
iltonian and then finding the value of the nonuniversal
critical parameters. For example, for percolation, the
scale-invariant dynamics is given by the critical probabil-
ity p., while for Ising, by the critical temperature T,.
From these nonuniversal critical parameters, the FST
method allows us to compute directly the universal ex-
ponent that characterizes the fractal dimension of the
critical clusters. The accuracy will be of the order of that
by which the nonuniversal parameters are known. If
these are known exactly, an accuracy of the order of 1%
for the fractal dimension can be easily achieved.

B. The percolating cluster

Percolation on a lattice consists of assigning an occu-
pation probability p to each bond (or site) and studying
the resulting structure as a function of p (Stauffer, 1985).
Below a critical probability p., one observes isolated clus-
ters of connected bonds (or sites); above p., an infinite
continuous network of bonds (or sites) develops; while ex-
actly at p_, one has a critical behavior characterized by
one infinite connected cluster, the percolating cluster,
and many other finite clusters. The value of p, can be
easily found through a renormalization procedure like
the one shown in Fig. 20, in which occupied bonds are

Pc

0 0.5 1

FIG. 20. Renormalization procedure for studying the scale-
invariant growth process for percolation. In (a) the connected
structure renormalizes into a connected bond, while in (b) the
structure is not connected and renormalizes into an empty
bond. In the case of percolation, the scale-invariant growth
process is characterized by the repulsive fixed point p,, which is
the nonuniversal critical value of the percolation probability.
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denoted by a thick line and empty bonds by a thin line.
Considering a configuration of five bonds, we see that it
renormalizes into an occupied bond if it is vertically con-
nected. Otherwise it renormalizes into an empty bond
(Fig. 20). The renormalization transformation for the
bond occupation probability p can be easily computed as

p'=2p1—p)P+8pX1—p)*+5p*(1—p)+p°. (5.1

From this relation one can see immediately that scale
invariance is only guaranteed by the nontrivial fixed
point p,=0.5. In this case this result is even exact, but
this should be considered as fortuitous. One can also see
that this fixed point is repulsive. This means that if we
start with p <0.5 at the microscopic scale and look at
larger and larger boxes, the occupation probability for
these boxes will go to zero. This implies the existence of
a p-dependent characteristic length above which no
scale-invariant growth rule exists. In practice, this
means that only finite clusters can be formed. The oppo-
site will happen if p>0.5. In such a case, above a
characteristic length scale, the invariant growth rule will
correspond to the occupation of all the coarse-grained
bonds, leading therefore to a compact structure. There-
fore this problem is not self-critical and, in order to get a
fractal structure, it needs the fine-tuning of the critical
parameter p.. The fractal properties can be properly
defined for the percolating cluster, and this will be the
object of our studies. In two dimensions the exact value
of the fractal dimension of the percolating cluster
D=91/48=1.8958... has been derived by conformal
mapping methods (den Nijs, 1979, 1983).

1. Fixed-scale transformation application
to the percolation problem

In order to apply the FST to the percolation problem,
it is most convenient to define a dynamic growth process
that generates the percolating cluster. This can be
achieved by the following process (Vicsek, 1992). Given
a starting configuration of sites (even a single one) con-
nected by occupied bonds, one considers all the bonds of
the perimeter of this structure. For each bond a stochas-
tic process takes place (only once); with probability p, the
bond becomes part of the structure, while with probabili-
ty (1—p) it will be empty forever. It is easy to see that a
cluster generated by this dynamic process has the same
statistical weight as in the percolation process (Vicsek,
1992). One should note, however, that even for p=p, it
is not obvious that this process will generate the infinite
percolating cluster. There is, in fact, a finite probability
(strictly equal to 1, for p <p.) that this growth process
will generate a finite cluster. Since the fractal dimension
is well defined only for the infinite cluster, we must com-
plement this growth process with a condition of connec-
tivity in order to make sure that we are actually dealing
with the infinite cluster. In the following, we shall con-
sider two different ways of implementing this connectivi-
ty condition.
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Once the percolation problem has been cast in the
form of a dynamical process, the first problem is the
identification of the scale-invariant dynamics. From the
discussion of the general structure of scale-invariant
growth dynamics of Sec. VII, we can see that we should
consider the bond version of the model. Site percolation
would, in fact, evolve into bond percolation under scale
transformation. The scale-invariant dynamics corre-
sponds to the value of the occupation probability that is
the same at any level of coarse graining. This can be
determined using the simple renormalization scheme pre-
viously discussed. In general, however, one should iden-
tify the correct symmetry of the scale-invariant dynamics
and fix the value of p. by any method, even a numerical
one.

If the value of p. is known only approximately, the
same accuracy will be reflected in the value of D. Note
that this is a completely different perspective from that of
the RG methods. There the universal exponents are, in
fact, defined by the derivative of the RG transformation
at the nonuniversal fixed point p.. In the FST, one starts
from the value of p, and finds the exponents via the fixed
point of the iteration that corresponds to the dynamical
evolution at the same scale. Since p, corresponds to the
scale-invariant dynamics, the FST fixed point applies to
any scale and, therefore, one can relate it to the fractal
dimension.

We have seen in Sec. IV.B that the FST is defined via
the matrix elements M, ; that give the probability that a
configuration of type i will be followed, in the growth
direction, by a configuration of type j. For growth in two
dimensions (as in the present case), there are only two
configurations (i,j=1,2). Type 1 corresponds to a pair
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of sites in which one is occupied (black) and the other is
empty (white), while type 2 corresponds to both sites be-
ing occupied (black). Note that since we are going to use
scale-invariant dynamics, a “‘site” refers to a general level
of coarse graining and not necessarily to the minimal
scale.

In practice, in order to compute M ,, one starts with a
frozen configuration of type 1 (enclosed in boxes in Fig.
21) and studies the probability that, asymptotically, the
following configuration in the growth direction will have
both sites occupied. No growth process is considered
within the starting configuration because the matrix ele-
ments refer to the conditional probability that, given a
certain configuration, this will be followed by another
configuration.

The case shown in Fig. 21 refers to open configuration
with respect to boundary conditions (see Sec. IV.D) in
the sense that there is no nearby side branch to the struc-
ture being considered. We intend to describe the growth
with respect to the infinite (connected) percolating clus-
ter, and the growth probability is considered only within
the column above the starting (boxed) configuration. One
way to implement the condition of connectivity is to as-
sume a priori the existence of an occupied line of points
above the occupied site of the starting configuration.
This assumption is sometimes used also in numerical
simulations of dynamic or epidemic percolation (Vicsek,
1992). Later, we shall implement the connectivity condi-
tion with a different method, and the results will be very
similar for the two methods.

The first nontrivial growth process considered is shown
by the arrow in the top configuration of Fig. 21. This
bond will be occupied with a probability p =0.5 (we omit

FIG. 21. Scheme of the probability tree for
the case of open boundary conditions and on
starting configuration of type 1. The connec-

@-p) P . ®) tivity condition is implemented in this case by
PY a pre-existing line of occupied sites above the
I order starting configuration.
\ 1
[ ]
r (©
o
3 m
\ ° 11" order
[
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the index c¢ for simplicity). This will lead to a
configuration of type 2 following the starting one of type
1. In the opposite case, with probability (1—p), the bond
does not become occupied, and it will remain empty for-
ever. In this case the bond will be denoted by a cross.
The order of the calculation is defined by the number of
different arrows that are necessary to reach the initially
empty site above the starting configuration. The events
that lead to the occupation of this site up to third order
are shown in Fig. 21. The corresponding matrix ele-
ments are

ME(1)=p=0.5, (5.2)
M$%,(ID=p+(1—p)p>=0.625 , (5.3)
M, (I =p+(1—p)p?+(1—p)?p>=0.65625 ,  (5.4)

where the index op refers to the open boundary condi-
tions, and the roman numeral in parentheses refers to the
order of the calculation.

In a similar way, one can compute the dynamical evo-
lution conditional to a starting configuration of type 2.
The corresponding figure and details can be found in
Pietronero and Stella (1990). The matrix elements are, in
this case,

M%(D=p+(1—p)p=0.75, (5.5)
M, (ID=M%(I)+(1—p)*p?=0.8125 , (5.6)
M, (LD =M$,(ID+(1—p)*p3+(1—p)p*
+(1=p)p*+(1—p)p°+(1—p)p?
=0.849605 . (5.7)

If we limit our analysis to the case of open boundary
conditions, we have all the elements for computing frac-
tal dimension. In this simple case, the fixed point of the
FST is given by (see Sec. IV.B)
~-1

Ci= |1+ ﬂi , (5.8)
M;,

from which one can compute

D=1+1Ll§l—;l , (5.9
where

(n)=C¥t+2C3% . (5.10)
In this way we obtain

D°*(I)=1.7370, (5.11)

D°M(I1)=1.8044 , (5.12)

D°P(II1)=1.8588 . (5.13)

The third-order result [Eq. (5.13)] is already reasonably
close to the exact result D=91/48=1.8958.... It
should be noted that the results of this scheme, with only
open boundary conditions, are strictly lower bounds with
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respect to the exact value. In fact, in this case we have
an exact characterization of the scale-invariant dynamics
from the value p,=0.5. So the approximations come
only from the FST scheme. Therefore, going to higher
order in the calculation can only increase the value of the
fractal dimension, because it provides new paths for
reaching configuration 2. In addition, the use of open
boundary conditions also corresponds (in this case) to a
lower limit for D, because closed boundary conditions
would provide extra paths for reaching configuration 2.

The present scheme with a single type of boundary
condition (open) provides an accuracy that is of the order
of RSRG schemes. Within the FST we can, however,
easily improve the accuracy by considering additional
boundary conditions. A very convenient scheme in this
respect is the open-closed approximation discussed in
Sec. IV.D. In this scheme, one considers in a self-
consistent way only two types of boundary conditions,
the open one that we have discussed and the closed one
in which the considered structure is immediately fol-
lowed on the right by an extra branch. Actually, for per-
colation, this is a very good approximation, because
boundary conditions of intermediate type would contrib-
ute at only very high order.

In order to implement the open-closed scheme, one
must therefore also compute the matrix elements for the
case of closed boundary conditions. The calculation is
similar to the case of open boundary conditions, the only
difference being that one must also include the processes
in which the type 2 configuration is reached via a path
that originates from the extra branch. The effect is there-
fore to enhance the values of M , and M, , with respect
to the corresponding values of the open-boundary-
condition situation. The details of the calculation can be
found in Pietronero and Stella (1990); here we only report
the values of the fractal dimension at various orders,

D(1)=1.7370, (5.14)
D(II)=1.8643 , (5.15)
D(III)=1.8830 . (5.16)

The value of the most accurate result [ D(III)] is now in
very good agreement with the exact value,
D=91/48=1.8954. This shows the importance of the
fluctuations of the boundary conditions that, when prop-
erly included, can make real-space methods very accu-
rate.

2. Alternative connectivity conditions

We return to the problem of the connectivity condi-
tion, which in the previous calculation was ensured by
the assumption of a starting line of occupied points. It is
actually possible to implement this condition by employ-
ing a different method which leads to results that are ex-
tremely close to the previous ones. This consists of con-
sidering that the starting configuration should be con-
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FIG. 22. Calculation of second-order matrix elements with a different connectivity condition. In this case connectivity is guaranteed
by the fact that we only consider the connected configurations with their statistical weight. Only cases (c), (d), and (e) contribute to

0]
MP,

nected to a line at a certain distance; this distance now
corresponds to the order of the calculation. For exam-
ple, Fig. 22 shows the case of open boundary conditions
with a starting configuration of type 1. We then consider
the possible configurations that connect the starting
structure to a dashed line at a distance of two bonds. In
this sense the case shown corresponds to a second-order
calculation. As one can see in the left-hand structure
(boxed) of Fig. 22, the bond above the starting black site
must be occupied, otherwise the structure cannot be con-
nected. Therefore we must consider only the three bonds
denoted by the three thin lines. This gives a total of eight
configurations, but of these we consider only those five
that connect the starting structure with the final line.

For a configuration with n occupied bonds and n’ empty
ones, this probability is p”(1—p)". Since in our case

p=p.=0.5, the statistical weight is the same for all the

configurations.

Looking now at the five connected configurations
shown in Fig. 22, we can see that the configurations that
contribute to the matrix elements M, , are only (c), (d),
and (e). In fact, (a) leaves an empty site above the start-
ing configuration; and (b) leads to two separate clusters,
so the two occupied sites on the right-hand side will not
be part of the percolating cluster. We have therefore

M‘f}’z(II)=%=O.6 . (5.17)

TABLE 1. Fractal dimension and critical exponents of structures generated by equilibrium critical phe-
nomena computed with the FST method. The results are compared with the existing simulations or ex-

act estimate values (for the reference of each result, see text).

Model D exact

D FST
(best estimate)

D simulation

Percolation (d =2)
percolating cluster:
square lattice
triangular lattice
backbone
chemical distance

91/48=1.8958

Ising and Potts
models (d =2)

Clusters:
g =2 (Ising) 187/96=1.9479
q=3 153/80=1.9125
q=4 15/8=1.875
Droplets:
g =2 (Ising) 15/8=1.875
q=3 28/15=1.8666
q=4 15/8=1.875
Self-avoiding
polymer®
d=2 0.75
d=3
Lattice animals®
d=2

1.8914 (test for
universality)
1.8710
1.647(0.001) 1.60
1.17(0.01) 1.17

1.9570
1.9181
1.8841

1.8414
1.7817%
1.7525%

0.745
0.58(0.01) 0.592

0.641(0.001) 0.644

#Simplified scheme.

*The values reported refer to the exponent v=1/D.
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By repeating this analysis starting with a configuration
of type 2, we obtain

M (D=—2=0.75 .

If we shift the final line to a distance of three bonds

from the starting configuration, we can compute the ma-

trix elements up to third order. By performing the same

calculations for closed boundary conditions, we obtain, in
the open-closed approximation,

D(I1)=1.8182,
D(III)=1.8914 .

(5.18)

(5.19)
(5.20)

Note that in this case the order here has a different
meaning than in the previous calculation. Nevertheless,
the best value [Eq. (5.26)] is quite close to the best value
of the previous scheme [Eq. (5.22)], and both are in very
good agreement with the exact value.

3. Percolation on the triangular lattice

Previously we computed the fractal dimension of the
percolating cluster in two dimensions using as input the
topology of the lattice and the value of the bond percola-
tion threshold for the square lattice p, =0.5. Since frac-
tal dimension is expected to be a universal quantity, the
application to bond percolation problems with different
lattice topologies, and thus different p_, is an important
test of the potential of the method. For the triangular
lattice the bond percolation threshold has a wvalue,
p.=0.34729, very different from the value for the square
lattice. Universality implies that by changing the lattice

topology and the associated value of p,, one should re-
cover the same result for the fractal dimension D. The
FST method can also be implemented for the triangular
lattice (Pietronero and Stella, 1990), and the results are
shown in Table I and Fig. 23.

By comparing these results to those of the square lat-
tice, one can see that, despite the nonuniversal values of
p. being different by more than 30%, the values of D at
third order differ by only about 1%. This provides
strong support for the FST method in identifying univer-
sal exponents using as input the value of the nonuniversal
critical parameter p. and the topology of the lattice.

4. Topological properties: Backbone and chemical distance

In addition to the fractal dimension of the entire per-
colating cluster, different fractal dimensions have been
identified for important topological properties. For ex-
ample, the chemical distance corresponds to the most
direct path (topologically one dimensional) within the
percolating cluster. This path appears to be relevant, for
example, for the structure of river networks, and its frac-
tal dimension has been determined numerically to be

D, =1.17+0.01 . (5.21)

The backbone corresponds instead to the set of sites (or
bonds) that are connected by occupied bonds to both
edges, by two paths that have no edge in common.
Essentially, it consists of those sites through which
current would flow were the two edges of the percolating
cluster subject to a potential difference. The most accu-
rate numerical determination of the fractal dimension of
the backbone gives (Grassberger, 1992)

EXACT : D =91/48 = 1.8958 ......
1.90 -
; 1%
1o
FIG. 23. Values obtained with the FST
method for square, triangular, and invasion
180 percolation (Sec. VI) as a function of the order
80— ] of the calculation. This picture gives some
[0 SQUARE LATTICE idea about the accuracy and the convergence
TRIANGULAR LATTICE properties of the method.
sk INVASION PERCOLATION
(SQUARE LATTICE)
L70— ]
| I | I
1 o oI v

ORDER OF THE CALCULATION
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D,=1.6471+0.004 , (5.22)

and it is in agreement with other studies (Rintoul and
Nakanishi, 1992).

Up to now there has been no analytical approach (to
our knowledge) for computing the fractal dimensions of
the chemical distance and of the backbone. The FST
method can also be applied naturally to these topological
properties. This can be easily done by considering dia-
grams like those shown in Fig. 22 (complemented by a
few others) but defining the distribution (C,,C,) only for
those sites or bonds that in these diagrams correspond to
the chemical distance or to the backbone, respectively.

For the chemical distance, we obtain (Pietronero and
Schneider, 1995; Pietronero et al., 1995)

D ,=1.17, (5.23)
while the FST result for the backbone is
D,=1.60 . (5.24)

These results are in good agreement with the numeri-
cal values and show that these topological problems can
be easily approached within the FST scheme.

C. Ising and Potts clusters

The fractal dimension D of the Ising clusters, i.e., the
connected clusters of sites with identical spins, has been a
controversial issue for a long time. Recently, it was
shown (Coniglio, 1989; Duplantier and Saleur, 1989; Stel-
la and Vanderzande, 1989) that the exponents describing
Ising clusters at the critical point are those of the g =1
Potts model at its tricritical point, with the exact value
D =187/96=1.9479 in good agreement with numerical
estimates. Later, the exact values of the fractal dimen-
sion for the Potts clusters with ¢ =3 and ¢ =4 were also
conjectured from conformal mapping arguments (Van-
derzande, 1992).

The FST method can be applied to compute the fractal
dimensions of Ising and Potts clusters, and the calcula-
tion can be extended in a natural way to “droplets”
(Coniglio and Klein, 1980; Coniglio and Peruggi, 1982).
More details about FST calculations can be found in Er-
zan and Pietronero (1991).

The first step in the FST scheme is usually the
identification of the scale-invariant dynamics. Here we
are not using the dynamics directly; rather we are
presenting an Ornstein-Zernike-like expansion (Stell,
1987) for the matrix elements of the FST at a generic
length scale, where in place of the direct correlation func-
tion there appear the correlation functions computed
over the NN bonds connecting a site to occupied neigh-
bors. For the scale-invariant statistical properties, we
take the bare value of the critical NN coupling (given in
essence by the critical temperature), but renormalize the
NN correlations by summing over different connecting
paths. It can be argued that this procedure takes into ac-
count some features of the proliferation one would expect
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when dealing with coarse-grained variables (Erzan and
Pietronero, 1991).

It is important to note that the fractal object in which
we are interested is described in terms of a new set of
lattice-gas variables whose statistics are not the same as
those of the original spin system, although determined by
it in a way which we shall discuss later. Since we are
considering the system at a generic length scale, an “oc-
cupied site” in a region at that particular length scale
contains a connected part of the cluster of up-spins.
Conversely, an “empty site” may contain any number of
up-spins which, however, are bounded away from the
connected cluster by a number of down-spins. Thus, in
this coarse-grained picture, the absence of a bond will
signal an “empty” site, on the other hand, and not a
down-spin, which is important for the correct weighting
of the ensuing configurations.

It should be noted that in the present case a
configuration of type 1 consists of an occupied site (be-
longing to the cluster) and an “empty” one in the sense
discussed above. We would like to compute the probabil-
ity M, , or M, , that the “empty” site will finally be oc-
cupied. Here we take p; to be the conditional probability
for a site to be “up” (belonging to the cluster). It is
worth remarking that in this case we have the formation
of “empty” sites (absence of bonds) that do not belong to
the cluster, but these should not necessarily be con-
sidered “down” spins. Therefore the subsequent proba-
bility for the occupation of neighbor sites must be com-
puted keeping in mind that these are not down-spins. We
can make a simple estimate of p;, neglecting all but the
NN correlations,

kK,
b= — -
o Ko L, RK.

Here the Ising Hamiltonian is —H/kgT
=K 3 (;jy0;0;, 0;==1, and the Onsager critical point is
K, =%ln(\/§+ 1). In this way we can evaluate the matrix
elements (Erzan and Pietronero, 1991) and obtain, by us-
ing the lowest-order results,

D,,=1.9262 .

(5.25)

(5.26)

One can then include the effect of different boundary
conditions (i.e., also closed) and also consider large dia-
grams in which more correlations can be included, in or-
der to test the convergence of the calculations (Erzan and
Pietronero, 1991). It is possible to generalize this ap-
proach to the g-state Potts model, in which a cluster
refers to a connected configuration of identical spins, and
to the case of “droplets.” The details of these calcula-
tions and the extension to the open-closed scheme can be
found in Erzan and Pietronero (1991). Some of the nu-
merical results will be discussed in Sec. V.E.

D. Polymers and lattice animals

There are mainly two different classes of polymers:
linear and branched (de Gennes, 1979). In the presence
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of a good solvent, the statistics of linear polymers with
excluded volume is equivalent to a self-avoiding walk
(SAW) on a lattice. If the constituent monomers have
three or more functional groups, branched molecules can
form, and the statistics of such polymers is more complex
and usually described by Lattice Animals (LA) models
(Stanley et al., 1982). These systems are seen to have the
asymptotic properties of self-similarity when considered
at their critical point, i.e., in the limit of infinitely long
chains. Within a Grand Canonical context, the self-
similarity of the system is automatically guaranteed by
fixing the step fugacity k at its critical value k.. When k
is equal to k., there is no characteristic cluster size, and
we are at the critical point. Here we define as a cluster
the connected configurations of monomers. The average
end-to-end distance diverges as

Ek)~(k—k,)"" . (5.27)

The average number of monomers in a cluster {N) can
be related to its size £ by (Vicsek, 1992)

<N>~é-1/‘v~§D .

The application of the FST to these models requires
the knowledge of the critical fugacity, and it follows the
strategy used in percolation or Ising clusters. As for the
percolating cluster, we must ensure the infinite connec-
tivity of the critical configuration; i.e., the starting
configuration must be connected to a line at a certain dis-
tance, now corresponding to the order of the calculation.
Each configuration has a statistical weight given by k_ to
the power of the number of bonds in the configuration.
The scheme of calculation for LA is more complex than
that for the SAW. In this case the configurations may
branch or have loops, and the growing site may not be
unique. This complication leads to the need for introduc-
ing the fluctuations of the boundary conditions and for
setting up the full scheme of the FST framework. In or-
der to test the convergence of the method, we performed
calculations up to third order (for details, see Di Stasio
et al., 1994) that give the results shown in Table I.
Again, these results are in very good agreement with nu-
merical simulations (Watts, 1975; Derrida and Stauffer,
1985).

(5.28)

E. Summary of the fixed-scale transformation results
for Hamiltonian problems

In this section we have considered the application of
the FST to compute the fractal dimension of clusters gen-
erated at the critical points of classical Hamiltonian
problems. The properties of these models are often well
known; so these studies represent an important test for
the FST method. The main results are summarized in
Table I, and we can see that the accuracy of the FST re-
sults is typically of the order of 1 or 2%. This is much
better than the usual accuracy of real-space methods.
The origin of this systematic improvement can be found
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in the fact that in the FST, one does not change scale; so
the final object of the calculation concentrates essentially
on the asymptotic conditional occupation probability of a
single point. This allows a detailed treatment of the vari-
ous configurations, including the self-consistent descrip-
tion of different boundary conditions. This is usually im-
possible in RSRG, because the object of the calculation is
a cell with several sites. In this respect it has recently
been shown that the inclusion of different boundary con-
ditions in RSRG gives rise to an appreciable improve-
ment of the results (White and Noack, 1992). This shows
that real-space methods can become very accurate if the
appropriate scheme is chosen.

As a test of its systematicity, it is important to note
that the FST method also has predictive power. In our
studies of the Ising and Potts clusters (Erzan and
Pietronero, 1991), we could easily compute the fractal di-
mension for Potts clusters in two dimensions for ¢ =2, 3,
and 4 reported in Table I. At the time of these calcula-
tions, there were no analytical or numerical values to use
for comparison. After about one year, however, Vander-
zande (1992), using conformal mapping arguments, con-
jectured the exact values for these fractal dimensions,
shown in Table I. As one can see, the agreement between
the FST results and the (conjectured) exact ones is ex-
tremely good even when the FST results were obtained
before.

Even though Table I refers to standard Hamiltonian
models, several cases—Ilike the backbone and chemical
distance for percolation and some of the Potts clusters
and droplets—have never been studied with RG
methods.

VI. APPLICATION TO SIMPLE DYNAMICAL PROBLEMS
A. Directed percolation

Directed percolation (Kinzel, 1983) is a prototypical
model for a wide range of spatially extended dynamical
systems like epidemic models and birth-death processes
(Grassberger, 1986), contact processes, or interacting
particle systems (Schldgel, 1972; Dickman, 1986). It falls
into a universality class distinct from ordinary percola-
tion (Kinzel, 1983). At its critical point it can be shown
to have the same asymptotic scaling behavior as Reggeon
field theory (Grassberger and de la Torre, 1979; Cardy
and Sugar, 1980).

Directed percolation (DP) can be defined by consider-
ing random graphs consisting of occupied and empty
edges embedded in a d-dimensional hypercubic lattice.
The order parameter is the probability of encountering
spanning paths such that all the nearest-neighbor links
belonging to the path are oriented in one of the positive
lattice directions. Below a critical concentration p. of
occupied edges, the probability of finding spanning paths
goes to zero, with p, > pPee,

This problem can be cast as a dynamical process
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FIG. 24. Part of a connected directed-percolation cluster seen
as a dynamical object. Each site may persist to the next time
step or disappear. It may also give rise to a new particle at the
neighboring site along the positive y direction. At times
t,t+1,...,t+n, the sets of empty or occupied sites correspond
to the successive states of the dynamical system.

(Grassberger, 1986) or stochastic cellular automation
(Wolfram, 1983), in d —1 dimensions. Each occupied
vertex at time t may give rise, at time ¢ +1, to at most
2(d —1) daughters, each independently with probability
p. No spontaneous creation can occur; thus the empty
state is the absorbing state. Above a critical threshold
D, there is a finite probability that the “active” state will
be maintained indefinitely.

Of all the examples considered in this review, DP for
d=2 is the simplest, since the fractal set under con-
sideration consists of the states of a one-dimensional
dynamical system. The stationarity condition is simply
the requirement that this set remain statistically similar
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to itself in time (see Fig. 24). (One-dimensional versions
of all the other models considered in this review happen
to be trivial, in the sense of yielding compact sets.) The
FST to the Nth order now connects one state of this one-
dimensional dynamical object with another state re-
moved from the first by N time steps (see Figs. 25, 26).
This is similar to the framework within which alternative
connectivity conditions are implemented in Sec. V.B.

The initial configurations of type I (Fig. 25) may be
right or left occupied with equal probability; in each case
we first enumerate all nonbranching paths originating in
the initial cell and terminating in the corresponding cell
at ty,y. These paths are the possible “backbones” whose
respective weights are assigned thus: the first link in the
backbone is placed with uniform probability in all the
different possible positions; then each subsequent step is
weighted with 1/v;, where v, is the valence of the vertex
encountered at the kth step (Erzan and Pietronero, 1992).

From an examination of Fig. 27, the lowest-order ma-
trix elements M , for open and closed boundary condi-
tions are found to be

M®=1/2p ,

d 2 ©.1
M1’2=4/5p_1/4p .
Those for an initial cell of type 2 are
M$ =1—(4/3p—1/3p?),
(6.2)

M(2:!1=(1—p)2 .

Using the probabilities for encountering open and closed
boundary conditions and substituting p,=0.644071
(Baxter and Guttman, 1988; Essam et al., 1988; ben Av-
raham et al., 1991), we find the fractal dimension D’ of
the set of active sites of the one-dimensional dynamical
system defined above to be

FIG. 25. Graphs, with their respective
weights, for the matrix element M, of the
FST in the lowest order (see text). The back-
bone is shown as a double bond; the target site
is shaded. The graph is further decorated by
arrows placed on lines emanating from occu-
pied vertices, each independently, with proba-
bility p (and blacking them with probability
1—P). Vertices at which no bonds terminate
are empty, and lines emanating from empty
vertices are empty with probability 1.
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FIG. 26. Graph contributing to M}}. The total probability
that the target site will be reached from at least one of the two
occupied neighboring sites at ¢ is p'’. Only one of the possible
paths is displayed.

D' D=0.8251, (6.3)
D'UD=0_ 7435 , (6.4)
D'WD=0 74655 , (6.5)

for the various orders. For details, see Erzan and
Pietronero (1992).
Now recall that D’ corresponds to the fractal dimen-

sion of transverse sets of occupied points in the DP prob-

t t+ At

p*(X)

FIG. 27. Example of the quenched-stochastic transformation in
the case of invasion percolation. In the lower part is shown
how the original distribution for variables of the perimeter
bonds evolves asymptotically (for details, see text).
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lem in d =2 and is related to the known DP exponents
via D'=1—fB/v,, where B and v, are, respectively, the
order-parameter exponent and the exponent for the
“transverse” correlation length &,. The best known
series results for these quantities (Baxter and Guttman,
1988; Essam et al., 1988) yield D’'=0.748.

Directed percolation seen as a birth-death process will
be discussed again in Sec. X, within a Fock-space formal-
ism. The matrix elements can then be seen explicitly as
sums over directed paths.

B. Invasion percolation

Invasion percolation (IP) was introduced as a dynami-
cal model to simulate the displacement of one fluid by
another in a porous medium (Chandler et al., 1982;
Wilkinson and Willemsen, 1983; Feder, 1988). The ran-
dom nature of the rock is mimicked by a quenched ran-
dom distribution of bond strengths on a lattice (corre-
sponding, say, to channel diameter), ranging uniformly
between zero and 1. At any given time, the “front”
proceeds one step by picking the channel with the largest
diameter among all those immediately available to it,
namely, the perimeter bonds. The invasion process is
stopped when the fluid reaches the far boundary, or when
a spanning invasion pattern is established. The invasion
algorithm starting from one occupied site guarantees, as
does the DP scheme, that the cluster one obtains is con-
nected, or is the incipient infinite cluster. Once initial
conditions (the position of the front at time ¢=0) are
specified, the resulting invasion pattern is uniquely deter-
mined. Chayes and Chayes (1986) argue that the proba-
bility with which a bond is finally occupied or left empty
is equal to 1/2, namely, the threshold value for the bond
percolation problem in d =2, and that therefore the two
problems are equivalent. They indeed turn out to have
the same fractal dimension, but IP for incompressible
fluids falls into a different universality class than percola-
tion (Furnberg et al., 1988). Invasion percolation
represents a particularly interesting problem because its
dynamics is irreversible and the critical state is self-
organized. However, the final cluster is the percolating
problem of standard percolation, that is a critical prob-
lem of the usual type in which one has to fine-tune the
occupation probability to reach criticality.

We saw in Sec. V that it is easy to interpret ordinary
percolation into a growth process and treat it with the
FST. For IP, the problem is more complex because prob-
ability is not assigned per bond, but the growth process is
defined by an extremal statistics that involves all the
quenched random variables of the perimeter bonds. In
order to apply the FST to this problem, it is necessary to
define a stochastic process that corresponds to the
quenched averages over all possible realizations of the
random variables. We shall see how a deterministic dy-
namics corresponding to quenched disorder can be
mapped into a stochastic one with memory (Pietronero
and Schneider, 1990). Consider, for example, the growth
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process shown in Fig. 27. At the beginning (left), there
are two possible bonds in which growth can take place.
With each of these bonds a random variable is associated,
denoted X; and X,, respectively. They may take values
in the interval [0,1], all values being equally probable.
The corresponding probability densities are given by
(Fig. 27)

p(x)=1, x€(0,1), (6.6)

where the lower index k refers to the site and the upper
one in parentheses defines the original flat distribution.
Since X; and X, are assumed to be independent, the
probability that X, > X, is given by

P(X,>X,)= foldxp(lo)(x) foxdyp(zo’(y)=% , (6.7

as required also by symmetry. Let us now assume that
growth occurs at the bond with the largest random vari-
able X; and consider only the two bonds shown in the left
part of Fig. 27. If X, >X,, we add this bond to the
structure, which assumes the configuration on the right
of Fig. 27. Note that in some papers growth is defined by
the minimum of the X;. The problem is clearly sym-
metric, and here we stick to the maximum to be con-
sistent with Pietronero and Schneider (1990).

In the new configuration on the upper right of Fig. 27,
two new bonds appear, which are characterized by the
random variables X; and X,. We have no information
on these bonds; so their probability distribution will be
flat. The situation is different for the random variable
X,, because its distribution has already been tested by the
growth process and we know that X, <X,. This fact in-
cludes the information that we have from the growth
event itself. The new distribution for X, is therefore con-
ditional to the fact that X, <X,. This leads to

P (x)=Cpx) [ 0f‘dyp‘,‘”( v, (6.8)
where the normalization constant is
1 1
c= [dxp® 0)(p) . .
fo X Py (x)fxdypl ») (6.9)
Therefore we obtain

pV(x)=2(1—x) . (6.10)

For the configuration on the right of Fig. 27, we there-
fore have different distributions for the various indepen-
dent quenched variables. For X; and X,, we have no in-
formation; so they will correspond to the flat initial dis-
tribution. For X,, its distribution is instead conditional
to the previous growth event in which this variable was
tested, and it is given by Eq. (6.10). We can now assign
the growth probabilities for the new configuration on the
right of Fig. 27. Let us compute, for example, that X, is
the maximum of the three quenched variables. We start
by computing

PX,>X,)= [ldxpV(x) [dyp®(y)= (6.11)
0 0

W | =
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If this happens, however, the distribution of X, becomes
conditional also to this event, and we have

ﬁ*zl)(x)=C_lp(2”(x)foxdyp(3°)(y) . (6.12)
We can ask for the probability that X, will also be larger
than X, once we know that it is larger than X;. This is
given by
1

PG> X)= [ dxp‘z”(x)fo"dypg°>(y)=—;- . (6.13)
Therefore the probability that X, will be the maximum
among the three quenched variables is

(6.14)
and, analogously for the two other bonds, we obtain

p3=p4=—155 . (6.15)

We have therefore transformed a process based on
quenched random variables into a stochastic (annealed)
process. Note that while the first process is deterministic
for each realization of the disorder, the second one is sto-
chastic in the sense that individual evolution events are
independently selected from a given distribution at each
time. The essential idea is that the dynamics in a random
environment tests the environment itself, and it provides
conditional information for the effective probability dis-
tribution corresponding to the future events. This distri-
bution depends, then, on the entire history of the system.

The simple examples we have discussed also clarify
how screening effects automatically develop in a random
medium. The fact that in the first growth event the vari-
ables X, prevail over X, induces a modification in the fu-
ture distribution for X, that makes it less likely that this
bond will be favored with respect to the new ones that
appear after the growth process (X3,X,).

Once the original quenched problem corresponding to
IP has been transformed into a stochastic one, it is possi-
ble to apply the FST and to compute the fractal dimen-
sion. The first approach that essentially follows the lines
of the example discussed above can be found in
Pietronero and Schneider (1990). The results are report-
ed in Table II and in Fig. 23. These results should be
compared with D =91/48=1.8958 for percolation and
IP, and D" ~1.82 for IP with trapping (Chandler et al.,
1982; Wilkinson and Willemsen, 1983; Feder, 1988;
Furnberg and Feder, 1988; Roux and Guyon, 1989).
More recently, Marsili (1994) developed and generalized
this approach. Following the idea that a quenched dy-
namics evolves in a cognitive way, that it acquires more
and more information on the random environment by
testing it, one can consider the problem of the asymptotic
distribution for the variables corresponding to the perim-
eter bonds. This implies writing a self-consistent equa-
tion for the asymptotic distribution, and the problem
then becomes rather technical. It can be shown, howev-
er, that the distribution evolves spontaneously (self-
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TABLE II. Fractal dimension of structures generated by dynamical models computed with the FST method. The results are com-
pared with the existing simulations or exact estimate values (for the reference of each result, see text).

Model D exact

D simulation D FST

or series (best estimate)

Directed percolation (d =2)
Transverse 591/790=0.7481 0.748 0.7466
dimension (conjectured)
Invasion percolation (d =2) 91/48=1.8958 1.8872

(conjectured)
IP with trapping 1.82 1.8196
Self-organized criticality (d =2)
Bulk properties of
clusters 2.0(0.1) 1.9936

organization) in a step function characterized by the per-
colation threshold probability, as shown in the lower part
of Fig. 27.

In our opinion, invasion percolation represents a very
interesting model for various reasons: (i) It shows a self-
organized dynamics that evolves spontaneously towards
a structure that corresponds to the critical point of stan-
dard percolation; (ii) from a theoretical point of view, its
treatment requires the combination of the FST with a
new concept, the quenched-stochastic transformation; and
(iii) these two elements appear easily extendible to other
problems based on extremal statistics (Bak and Sneppen,
1993).

C. Sandpile models (self-organized criticality)

The sandpile and related models (Bak, Tang, and
Wiesenfeld, 1987, 1988; Tang and Bak, 1988; see also
Zhang, 1986 and Pietronero, Tartaglia and Zhang, 1991)
are nonlinearly coupled cellular automata with random
external input which are capable of reaching a steady
state with interesting self-similarity properties in both
space and time (Erzan and Sinha, 1991). For conveni-
ence, only a “height” model (rather than a “slope” mod-
el) will be considered here. It is defined by specifying on
a two-dimensional lattice the continuous variables
E(r,t), which receive random inputs O0<8E(r,t)=1,
such that

E(r,t+1)=E(r,t)+86E(r,t) . (6.16)

If the value of E(r,t) at any time exceeds a threshold,
here chosen to be 1, then one has

E(r,t)—0,
(6.17)
E(r+ér,t)>E(r+ér,t)+1E(r,t)

at all sites » where E(r,t)> 1. Here &r are the lattice vec-
tors to the nearest-neighbor sites. After each addition of
a packet of energy (6.16), the relaxation is deterministic,
and one waits until all the excess energy has been dissi-
pated before adding at another randomly chosen point.
The region over which the relaxation events extend, after
addition at a particular point, will be termed a ““cluster.”
The boundary conditions adopted here are to set £ =0 at
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the boundaries.

It is well known that in the steady state, which can be
characterized by an invariant distribution P(E), the clus-
ters defined above reach a power-law distribution of sizes
(Bak et al., 1988), for which this state has been termed
“self-organized critical” (SOC). However, they are not
fractal, but compact.

By using the FST, it is possible to calculate the fractal
dimension of the avalanche clusters (Pietronero and
Schneider, 1991). In fact, we find for the fractal dimen-
sion the strong evidence that it eventually converges to 2:

D(I)=1.9353, D(II)=1.9878, D(III)=1.9936 . (6.18)

It is worth mentioning that recently, following a reason-
ing inspired by the FST framework, we developed a re-
normalization scheme for the sandpile model (Pietronero
et al., 1994; Vespignani et al., 1995). This approach al-
lows us to clarify the SOC nature of the process, to iden-
tify the universality classes of several models, and to
compute analytically the various critical exponents.

In a recent paper coauthored by one of us (Hiiner and
Erzan, 1994), the FST was also applied to a system with
continuous dynamical variables in discrete time and
space, namely, a one-dimensional array of nonlinear
maps with Laplacian couplings. Such a set of coupled
iterated maps may be regarded as a model for a system
described by partial differential equations. It exhibits a
transition between an asymptotically turbulent and a
laminar state, as a function of several parameters, and
spatio-temporal intermittency is observed along the
phase boundary. The FST approach has enabled us to
compute the fractal dimension of the evolving set of tur-
bulent sites as well as a conditional asymptotic invariant
measure on the array.

Table II summarizes the FST results for the simple
dynamical models discussed in this section.

VIl. FIXED-SCALE TRANSFORMATION
FOR DIFFUSION-LIMITED AGGREGATION
AND DIELECTRIC BREAKDOWN MODEL

This is the central section of this review, because here
we finally approach the problem of the calculation of
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fractal dimension for DLA and the DBM. This is the
question that has motivated the development of the FST
approach and that is problematic to treat with the usual
theoretical methods.

In order to compute fractal dimension from the FST
fixed point, it is necessary that the FST refer to variables
that are coarse grained at a generic scale and that the
growth rules used be therefore valid at any scale. This
problem will be discussed in detail in Sec. VIL.A.

In Sec. VII.B we begin by describing the original FST
approach with the DBM (bond) rules as originally
developed (Pietronero et al., 1988a, 1988b). In Sec.
VII.D we shall use instead the renormalized growth rules
in which S*+1. We shall see in the end that the results
are rather close and lead to a reasonably systematic ap-
proach to the fractal properties of DLA and the DBM.

A. Renormalization of the dynamics for diffusion-limited
aggregation and the dielectric breakdown model

1. Space of growth rules

We have seen that the asymptotic, scale-invariant-
dynamics growth rules are necessary for a complete
definition of the FST approach. In addition, the
knowledge of this scale-invariant dynamics is one of the
key points in the understanding of why growth models
give rise to fractal structures. For fractal-growth models
like DLA and DBM, this problem is very complex, and a
complete and satisfactory understanding has not yet been
achieved. This is due to the high number of parameters
of the renormalized dynamics of these highly nonlocal
models. However, we shall see that (i) increasingly better

(3) standard growth

600 Lattice units

TABLE III. Fractal dimension of DLA clusters grown using
different types of growth rules (p;, sticking probability; o —/,
off-lattice; p,, diagonal coupling).

Model D
P,=0.25 1.721+0.06
o—I1 1.71+0.07
Pd 1.72+0.05

schemes of renormalization show nontrivial fixed points
with similar properties: and (ii) a key parameter for the
renormalization of the growth rules is, in our opinion,
the effective noise reduction for which we shall present a
detailed renormalization study.

DLA and the DBM are intrinsically critical models in
the sense that their dynamics evolves under scale trans-
formation into the asymptotic scale-invariant ones
without the tuning of any parameter. The scale-invariant
properties of this effective asymptotic dynamics are re-
sponsible for the scale-invariant structures generated by
these models. The problem is, then, to find the effective
dynamics (growth rules) that apply to coarse-grained
variables in the scale-invariant, asymptotic regime. In
order to address this question, we introduce the space of
growth rules, in which each point represents a given
growth rule (dynamics). In practice, one can consider a
subset of these parameters and study their evolution un-
der scale change. The scale-invariant growth rule will be
indicated by the fixed point of the RG transformation
that acts on the parameters of this space. The existence
and nature (stable as well as unstable) of the fixed point is
responsible for the universality class of the models. In

{b) diagonal growth
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FIG. 28. Example of two clusters generated by the standard DBM (bond) growth rule (left) and by a bond growth rule that also in-
cludes diagonal processes. The two structures have the same fractal dimension (1.70); so they give rise to the same effective growth

rule for coarse-grained variables at large scale.
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FIG. 29. Four growth rules that give rise to the same asymptot-
ic structures with fractal dimension D=1.70 in radial
geometry.

addition, the position of the fixed point in this space of
growth rules is a nonuniversal element analogous to the
value of the critical probability or temperature in per-
colation or Ising problems. For irreversible-growth phe-
nomena, we can then distinguish between two different
aspects of the problem. First, we study the invariant
form of the growth rules, which in a certain sense corre-
sponds to the nontrivial part of the Hamiltonian in usual
critical phenomena. Then, we restrict our space of
growth rules to the parameters describing the relevant in-
variant form of the dynamics, and we search for the fixed
point.

It is useful to illustrate this point by an example. The
standard DLA is defined with a site rule, but modified
versions of the growth rule can be investigated.

(a) DLA defined per bond: The particles stick when,
from a surface site, they move onto a site occupied by the
aggregate. In the DBM, the growth probability is associ-
ated with each bond.

(b) DLA with diagonal coupling (next-nearest-neighbor
interactions): In this version the particles stick as soon as
they reach a site that is next-nearest neighbor to the ag-
gregate. In the DBM, this corresponds to considering a
diagonal bond probability proportional to the electric
field.

(c) DLA with sticking probability less than 1: The par-
ticles stick to the surface with probability P, and contin-
ue to diffuse with probability 1—P,.

The above modifications have been found to be ir-
relevant from the standpoint of fractal dimensions (see
Table III), and the clusters generated by numerical simu-
lations of these different models are identical in their
overall behavior, as shown in Fig. 28.

Thus we can say that DLA is universal with respect to
the four growth rules of Fig. 29. All these modifications
belong to the same universality class, and under scale
transformation the dynamics flow automatically in the
fixed point that identifies the value of the parameters rel-
ative to the asymptotic form of the growth rules. Clear-
ly, the fixed-point parameters could be different from the
microscopic ones, even if the form of the microscopic
growth rule is the same as that of the asymptotic one.

Our task, then, is to define the asymptotic form of the
DBM growth rule and to construct a renormalization
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scheme for the parameters that allows us to study the
essential scale-invariant properties of the model.

2. Asymptotic structure of the dynamics

Let us now consider the growth rules shown in Fig. 29
and try to cast the problem of finding the invariant form
of the growth rules in the renormalization-group frame-
work. The model we shall consider is the DBM with
7n=1 (equivalent to DLA). If we also consider the diago-
nal bond, the diagonal growth probability p,; is propor-
tional to the local electric field, given by the gradient of
the potential ¢ along this direction,

v
Pa= | f_2|" . (7.1)

In Fig. 30(a), we show the diagonal growth rule at the
minimal scale for a tip configuration. In this case the
growth probability is simply proportional to the Lapla-
cian potentials ¢; of the corresponding sites, and it is use-
ful to parametrize the growth process by introducing the
following variables:

u=1u=ﬂ#=ﬁ
O T g T gy

We thus obtain for the growth probabilities of the sites

(7.2)

) 3]

—»O (1)

(0)

)

(¢V]

@)
& 20150

----- »O----1-$O-----

FIG. 30. Renormalization scheme of the growth process for a
particular configuration. At the lowest scale (upper figure), the
growth probability is simply related to the potentials. At larger
scale, the effective growth processes for the coarse-grained vari-
ables are composed by many growth processes at the smaller
scale (lower figure).
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We may then consider analogous variables to charac-
terize the growth process for coarse-grained variables at
a larger scale, as shown in Fig. 30(b). In this case the
probability of reaching a certain cell corresponds to the
sum over all growth processes that lead to the occupation
of at least one site of this cell. In this way one can intro-
duce a renormalization transformation

pk =R (ulP) ‘ (7.4)

that links the growth processes at a scale (k+1) to those
at scale (k). The fixed-point vector p of the transforma-
tion would eventually lead to the characterization of the
asymptotic scale-invariant dynamics. The solution of
this renormalization problem would imply having to deal
with an infinite proliferation of the variables u; corre-
sponding to the effective growth probabilities associated
with each new type of growth process (or growth cell) in-
duced by the coarse-graining procedure, and the quanti-
tative analysis of the fixed point is very complex. Howev-
er, we can discuss rather simply the general form of the
dynamics. Let us consider the renormalization of the di-
agonal bond growth rule with a cell-to-bond renormaliza-
tion scheme and a ‘“corner rule” to define the spanning
condition. For the configuration shown in Fig. 30, we
can write the RG equation for the diagonal growth prob-
ability as

2 CaPO’,a

- a
2 CaPO,a
a

’

Ll =R(y,) . (7.5)

Here the index «a identifies the possible configurations
of the occupied cell, and C,, is the corresponding statisti-
cal weight. The probability P;, represents the sum of the
probabilities of the elementary growth paths, each of
them given by the product of the elementary growth pro-
cesses that, starting from the configuration «, lead to the

occupation of the coarse-grained cell j (in Fig. 30,

j=0,0",1).
For the diagonal growth process, the numerator of Eq.
(7.5) can be written as

2 CoPy o =pg Alpopig, ..+ 0)

FuZB(fogs - vy o o) (7.6)

In fact, the growth paths that correspond to a diagonal
growth process for the coarse-grained dynamics can only
contain one or two diagonal growth processes at the
lower scale. The terms 4 and B are complex expressions
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given by the sum over the possible growth processes.
The term in the denominator of Eq. (7.5) can be written
as

2 CoPy,o=Alpottgs - - ) F1aB(posigs - - -
a

+ o (7.7)

because each process that leads to (0') can lead to (0), if
one replaces the last diagonal growth with weight u,
with a vertical growth whose weight is 1. In addition,
there may be other processes that lead to the occupation
of the coarse-grained cell (0). Therefore the iterative re-
normalization equation for the diagonal bond coupling
from scale (k) to scale (k + 1) becomes

y&k“’:ufi")A'( )+[“(dk)]2Bl( cee) , (7.8)
where A4'( - -+ ) <1 for every value of the vector u. This
equation has a fixed point at

ui=0. (7.9)

This fixed point is clearly stable, because

(k+1)
Oy

du

SR
duy

(7.10)

2 r

This means that the diagonal growth process that is
present at the lowest scale disappears in asymptotic
scale-invariant dynamics. We can also illustrate this
point in the following intuitive way. The diagonal bond
disappears at large scales because the diagonal process
implies the occupation of the cell (0’) in Fig. 30 without
going through cells (0) or (1). This corresponds only to
the processes that go through point A4 in Fig. 30, and the
phase space of these processes is very small compared to
the processes that lead to the occupancy of the other
cells. Clearly, in the limit of infinite cell size, the relative
weight of these paths leading to the diagonal process goes
to zero. This implies that, if one begins with growth
rules that also include the diagonal growth process at the
minimal scale, these will be transformed into an effective
asymptotic growth rule where the diagonal processes
have disappeared.

Using similar reasoning, it is easy to show that the
asymptotic scale-invariant growth rule must be of bond
type and not of site type. In fact, using our parametriza-
tion of the growth rule, the growth probability of a
coarse-grained cell is clearly proportional to the number
of paths that lead to its occupation. However, the num-
ber of paths is clearly proportional to the number of
next-nearest occupied coarse-grained cells. Therefore the
growth probability is proportional to the number of
next-nearest growth sites, i.e., a bond growth rule. With
similar simple renormalization schemes, it is possible to
show that the sticking probability P; renormalizes to the
trivial value P,=1 (Vespignani and Pietronero, 1993).
Figure 31 shows the renormalization flows for diagonal
coupling and the sticking probability.
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P's P4

FIG. 31. Renormalization flow
of the sticking parameter (a) and
the diagonal coupling (b). The
stable fixed points are p,=1 and
Pa=0, respectively.

Ps 1

This naive analysis (for a more rigorous treatment, see
De Angelis et al., 1991) shows that only the bond-type
growth rule has the correct structure implied by the scale
invariance of the dynamics. The other growth rules will
flow asymptotically into one of bond type. Of course,
this does not imply that the scale-invariant growth rule is
identical to the one at the minimal scale.

Recently, similar problems seemed also to arise for
percolation. In fact, it has been confirmed (Ziff, 1992)
that the probability R; (p) for a site percolation cluster to
span a square lattice of the side L goes to ; as L — .
This is in agreement with universality and with the fact
that, for bond percolation, R;(p.)=1/2. However, it is
in contrast with RG theory defined per site, for which
R;(p.)=p.=0,59. This could be because site percola-
tion does not possess the correct symmetry from which
RG must be defined. On the contrary, bond percolation
seems to be completely consistent with RG studies, ex-
tensive simulations, and exact results.

3. Parametrization of the growth rules

We have identified the general structure of asymptotic
dynamics for growth models like DLA and the DBM,
showing that the growth rules renormalize into effective
scale-invariant growth rules of simple bond type. In this
way we have restricted the space of the parameters that
characterize the growth dynamics. However, a quantita-
tive analysis of the fixed point p* in this subspace is very
complex. The problems are mainly due to a natural pro-
liferation of the relevant parameters. Using the parame-
trization of Egs. (7.2) and (7.3), we can try to obtain the
renormalization equation for u; to find the fixed point.
However, the calculation of this group equation also in-
volves growth process parametrized by a variable u,, as
shown in Fig. 32. The RG transformation for u, calls for
the introduction of the variables u; and p, and so on. At
the end, we obtain

pi =R, (uf,ub) ,
s T =Ryl psudud) (7.11)
etc.

Therefore this is a problem that leads to an infinite
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proliferation. Unfortunately, it would be difficult to
truncate the set of equations by setting u; =0 for i = n, as
is usually done with proliferation problems. This is be-
cause we know that all the parameters are, in principle,
different from zero. However, it is possible to use this
approach to test the consistency of asymptotic growth
rules for the fixed-point solution of Eq. (7.11). This can
be done by setting p; =¢; /¢y for i >n (this implies set-
ting its value to the probability corresponding to the
original growth rule) and studying the stability of the
fixed point with respect to n.

The interesting approach of Nagatani (1987a, 1987b)
actually represents an attempt to deal with the renormal-
ization of growth rules. However, it is quite different
from the one we have just discussed. In fact, this ap-
proach is based on the introduction of a single new pa-
rameter o that represents the dielectric constant for the
interface bond. Using a RG procedure, one obtains a
fixed-point value o* which should represent scale-
invariant growth rules. The problem with this approach
is that the introduction of a growth rule phase space
defined by o does not necessarily correspond to the natu-
ral proliferation of the problem, nor is it clear why this
should be a specially relevant parameter. In fact, the use
of growth rules with the value o* in a computer simula-
tion should lead to asymptotic structures identical to
those of the standard growth (o =1) but with a faster
convergency. We have performed computer simulations

(0] (o]
° 9 w LT
(o] =0 (o) | '
,,ll —_— ll 1
185 o

FIG. 32. Example of renormalization transformation for the
growth rules characterized by the parameters u;. It is possible
to see that the calculation of the renormalization equation for
p also involves growth processes characterized by p,. This
problem leads to an infinite proliferation that cannot be truncat-
ed.
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in order to check this point (De Angelis et al., 1991), and
the result is, instead, that the fractal dimension depends
explicitly on the value of o. In cylinder geometry we ob-
tain D =1.67 for o* =1 (standard model), while D =1.61
for o0*=3.11. This implies that the generalization of the
dynamics along the o line seems to bring the problem out
of its natural basin of attraction and universality class.
Therefore o does not seem to be the right parameter for
asymptotic growth rules.

In this respect one may speculate that renormalization
of the dielectric constant via o refers only to the static
properties. The different probabilities defined by o1
are only used to assign the various weights of each
configuration. However, the renormalization process
does not refer to the growth probabilities, while it only
refers to the static properties.

4. Scale-invariant screening
and noise-reduction parameters

Let us focus our attention on the essential features of
growth rules that are crucial in order to generate fractal
structures. In this sense the FST framework points out
the basic concept that can be studied: fractals can be
generated only if screening persists at the asymptotic
scale (see Sec. IV.B). Note that the presence of screening
due to the Laplace equation in the original growth rule
does not guarantee that a similar effect will persist for
coarse-grained variables. In fact, if one studies the
growth rules for a coarse-grained cell, a problem of noise
reduction (Kertesz and Vicsek, 1986; Nittman and Stan-
ley, 1986) naturally appears. Naively, therefore, one
could expect that, asymptotically, the effective noise-
reduction parameter (S) could diverge. This would then
eliminate screening effects and lead to compact struc-
tures. Therefore the key feature of asymptotic growth
rules is in the identification of the fixed-point noise-
reduction parameter.

In the noise-reduction generalization of the DLA and
DBM growth rules, a bond is grown only after having
been hit by S particles (Kertesz and Vicsek, 1986). A
counter is raised by 1 each time a particle hits the respec-
tive bond. When a counter reaches the value S, the cor-
responding bond is occupied and the new bonds near this
one have their counters set to zero. The effect of this
procedure is a systematic reduction of noise; in fact, the
introduction of the parameters S corresponds to averag-
ing over several realizations of the same stochastic pro-
cess. This reduces fluctuations and introduces, through
the counters, a memory effect. For a finite value of S, the
branches of DLA patterns acquire a finite thickness,
while for §— o, screening is suppressed and the struc-
ture is compact. It is interesting to note that aggregates
grown with noise-reduction parameters greater than 1
seem to cross over to a larger value of the fractal dimen-
sion. However, for larger clusters (asymptotic growth),
the fractal dimension does not depend on S and equals
the one measured for standard clusters. This implies that
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the universality class of the noise-reduced growth rules is
the same for all finite values of S. Therefore the parame-
trization of the growth rules by this parameter does not
change the basin of attraction in the space of growth
rules.

The parametrization of the growth rules by the noise-
reduction parameter S is rather simple. For example, let
us consider the right configuration in Fig. 34, where we
have a competition between the two bonds 1 and 2. If
the parameter S is equal to 1 (standard growth), the prob-
ability P, and P, of growing, respectively, either bond 1
or 2 is given by the corresponding Laplacian potentials
¢, and ¢,. For a generic value of S, the probability P(S)
that bond 1 will grow before bond 2 can instead be writ-
ten as

=is_l S+k—1 &y ’ é, ,
Pis=y 3 [0 ][¢1+¢zl [¢1+¢2} ’
(7.12)

where N is a normalization factor.

This expression corresponds to the probability that
S —1 particles arrive at bond 1, while any number be-
tween O and S —1 arrive at bond 2, and, finally, the last
particle reaches bond 1. It is then straightforward to ob-
tain P,(S) by changing in Eq. (7.12) subscript 1 with sub-
script 2 and vice versa.

This scheme can be naturally generalized to more com-
plex structures that involve more than two growing
bonds by using a multinomial generalization. It is also
possible to extend the results to noninteger values of S by
analytical continuation.

This formalism allows us to obtain the elementary
growth probability as a function of the parameter S and
to develop an analytical RSRG for the effective noise
reduction.

5. Renormalization group for the noise-reduction parameter

We now address the problem of constructing a scheme
of renormalization for the noise-reduction parameter S.
If one considers the original DLA process with S =1 at
the minimal scale, it is clear that a nontrivial noise-
reduction parameter appears for a coarse-grained cell, be-
cause many bonds are needed to span the coarse-grained
cells. The problem is therefore to study the evolution of
the effective noise-reduction parameter as a function of
the scale transformation. We start with the arrival of
each particle on a given bond that actually corresponds
to a Poisson process. If S particles must arrive on a bond
in order for it to grow, the probability distribution of the
time ¢ needed to occupy a bond is

e""‘(M)S"‘
(S—1)

where A is a parameter related to the single occupation
probability.

W(S,t)dt= Adt , (7.13)
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It is then possible to show that (Barker and Ball, 1990)

1_ (&%)
S (1)?

where A has disappeared. For a coarse-grained bond, one
also has to consider its internal structure. In this case
the growth of the coarse-grained bond will be the super-
position of different Poisson processes, each with an asso-
ciate probability and a certain number of particles N(.S)
which are functions of the small-scale noise-reduction pa-
rameters. One can then define the renormalized noise-
reduction parameter via the relative fluctuations of the
growth time for this convoluted distribution (see Fig. 33).
In practice, this is done via the ansatz that the rescaled
distribution still has a Poisson structure.

Describing the relative growth time fluctuations as a
function of the number of particles arrived (Barker and
Ball, 1990), we obtain

) (7.14)

1_ 1 (N(S)*)—(N(S))?
s (N(S)) (N(S))?

Our aim is therefore to define the appropriate renormal-
ization scheme in order to compute the averages that ap-
pear in Eq. (7.15).

In order to do this analytically, we used the cell-to-
bond renormalization of Fig. 34. The transformation is
defined by the following renormalization rules: (a) The
cell not spanned vertically by grown (thick) bonds is re-
normalized to a vertical perimeter (thin) bond; and (b) the

(7.15)

cell spanned by grown bonds is renormalized to a vertical

grown bond.

To obtain the RG transformation, it is convenient, in
practice, to consider the renormalization of a single bond
along the vertical direction. In this case the renormaliza-
tion equation is exactly that of Eq. (7.15). It is possible to
develop more complex RG schemes (Cafiero et al., 1993)
that take into account the coupling between the vertical
and the horizontal growth directions with the corre-
sponding proliferation effects, but this leads to a nontrivi-

Total time distribution for growth

P(t)

FIG. 33. Schematic of the probability distribution of the time ¢
needed to occupy a rescaled bond. The growth of the coarse-
grained bond will be the superposition of different processes.
The renormalized noise-reduction parameter is defined via the
relative fluctuations of the convoluted distribution.
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FIG. 34. Cell-bond renormalization scheme. The thick line
denotes the growing bonds.

al complication of the RG equations. However, these im-
proved schemes essentially confirm the results of the sim-
plest one that we present here.

Thus, as a starting point, we have to consider all the
configurations renormalized in a perimeter bond (Fig.
35). The next step is to compute the quantities (N(S))
and (N(S)?) needed to span each configuration. One
must therefore consider all the paths that span the cell
for a given starting configuration, weighting them with
the probabilities of the corresponding growth process.
Note that all the possible configurations of the small-
scale counters have to be considered (memory effect). Fi-
nally, this process must be repeated for all the possible
starting configurations of the considered cell. These
configurations, shown in Fig. 35, are related to each oth-
er by the growth process. This scheme has technical
similarities with those of Wang et al. (1989a, 1989b);
however, it is now used for different purposes. The
weight W(a) of each starting configuration (a) can
therefore be related to the probabilities of the elementary
growth processes.

Thus we can finally write

(N($))=Z W'(S) 3 P{*(S)IN/(S) (7.16)

in which the index i refers to a particular path of the
starting configuration (a), whose total probability is
given by P{®), and N|® is the corresponding total number
of particles. A similar equation can be written for
(N%*S)). Each path probability P{*(S) is given by a se-
quence of elementary growth process probabilities P;(S)
that depend on the particular configuration (j). One can
evaluate these probabilities using the parametrization
previously shown, for which Eq. (7.12) is an example.

Within the above scheme it is possible to compute
analytically the RG transformation given by Eq. (7.15).
The approach we have shown is quite simple; however,
there are many technical details to be managed (Cafiero
et al., 1993). Here we show only the results which are
essentially contained in Fig. 36. In this figure we plot
the RG equation S’'=R(S) that describes the change of
the noise-reduction parameter under scale transforma-
tion. These are the essential results:

(a) The fixed point for the noise-reduction parameter is
attractive, reflecting the self-critical nature of DLA and
DBM.
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(b) The fixed-point value S*~2.4 is therefore of the or-
der of unity. Thus the scale-invariant dynamics is rather
close to the microscopic one from which the models are
defined. Furthermore, this guarantees that effective
screening is preserved to all scales in the asymptotic re-
gime.

These results imply that noise-reduced microscopic
growth rules flow essentially in the standard microscopic
growth rules. This is in contrast to the usual belief that
noise reduction accelerates the approach to the asymp-
totic behavior, but it is in agreement with recent studies
(Moukarzel, 1992). In addition, it is important to note
that the behavior of the noise-reduction parameter has
been studied up to now with respect to the overall shape
or anisotropy of the cluster (Barker and Ball, 1980; Eck-
mann et al., 1989), while our analysis is focused directly
on the intrinsic fractal properties that hold for both lat-
tice and off-lattice growth.

The small value of S* implies that the minimal-scale

S'=R(S)

4.5

3.5

2.5

1.5

FIG. 36. Renormalization equation for the noise-reduction pa-
rameter S’ at the coarse-grained scale as a function of the
noise-reduction parameter S of the finer scale. One can see that
the fixed point is attractive and that the value of S* is of the or-
der of unity, implying that screening is preserved to the asymp-
totic scale.
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different  occupation
configurations for a 2X2 cell. They are related
to each other by the growth processes. The
thick black lines correspond to occupied
bonds, while the thin lines represent the bonds
on which growth can occur.

growth rule is already rather close to the asymptotic one,
allowing us to understand why the initial FST studies of
DLA, in which minimal-scale growth rules were used,
gave, indeed, reasonable results for the fractal dimension.
This also ensures the persistence of screening in the
scale-invariant dynamics of the growth process, explain-
ing why the DLA process actually leads to a fractal
structure. These results also elucidate the self-critical na-
ture of DLA patterns. This is because, under scale
change, noise is automatically generated by the dynamics
of the system, even if one starts from the quasideter-
ministic case S = oo. This effect can be understood in the
following way. Let us consider a growth rule with a large
value of S (very small noise) acting at the microscopic
scale. We want to estimate how this value changes under
scale transformation by evaluating the probability distri-
bution to span a cell and occupy a coarse-grained bond in
a time t. The starting configurations of the cell (Fig. 35)
lead to various possible paths of lengths between 1 and 4.
For simplicity, let us consider only the case of path
length equal to two and three steps, with corresponding
probabilities p and (1—p). The probability distribution
will be given by the superposition of two functions with
narrow peaks (small noise limit) at the positions 2S and
3S, respectively:

W(S',t)=PW(2S,t)+(1—P)W(3S,t) . (7.17)

The fact that W(S’,t) is a convolution of two peaks
naturally introduces fluctuations (noise) that are larger
than the intrinsic fluctuations of W(2S,t) and W(3S,t).
If p is different from zero (this is certainly the case if
different configurations are involved), we can treat these
distributions as delta functions, obtaining via Eq. (7.15)
the following upper limit for the renormalized S:

L2 _ (3—P)

o {(8t2) ~ P(1—P) '

(7.18)

Therefore the value of S’ becomes of the order of unity
after few iterations. This reflects the fact that the pres-
ence of different paths leads to fluctuations of the order
of the path length, and it implies that (8z2) and (7 )? are
of the same order independently of the microscopic value
of S. In a certain sense we can look upon this
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phenomenon as geometrical noise generation. In this
way it is possible to understand why DLA dynamics in-
trinsically generates large noise asymptotically and does
not become deterministic.

B. Fixed-scale transformation for
diffusion-limited aggregation and dielectric breakdown
model with the standard growth rules

This section contains a summary of the original FST
approach to DLA and the DBM (Pietronero et al.,
1988a, 1988b) in which the standard DBM growth rules
are used. However, given the analysis of the scale-
invariant growth rules of Sec. VII.A, we are now able to
understand why the use of the standard growth rules cor-
responds to a good approximation with respect to the
scale-invariant ones.

1. Simplest method for computing the fractal dimension of
diffusion-limited aggregation and dielectric breakdown model

We start with the case of closed boundary conditions
(see Sec. IV.B) by assuming that the configurations and
the growth processes that occur in the central column are
identical to those that occur in the adjacent columns. In
practice, therefore, this situation corresponds to periodic
boundary conditions. Figure 37 shows the scheme for

(a)
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e|® |0
oje|o

(b) ! ._.o«;_.. (c)

(-p3 5!
ORDER

’\
7\

¢\
¥ I

FIG. 37. Starting from a frozen cell of type 1 (boxed), we con-
sider the growth processes that define the asymptotic probabili-
ty for the next cell in the growth direction to be of type 1 or 2.
Periodic boundary conditions are used with the period defined
by the dashed lines. The probability of each process is simply
related to the Laplacian potential of the configuration.
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Fixed-scale transformation . . .

the calculation of the FST matrix elements, starting from
a configuration of type 1. We are reminded that these
matrix elements are conditional to the existence of a cer-
tain starting configuration; so we do not have to consider
growth processes inside the initial configuration (within
boxes in Fig. 37).

The first site to be occupied will be necessarily the one
above the occupied site of the initial cell; therefore the
first nontrivial growth processes are those indicated by
the arrows in Fig. 37(a). In order to compute their prob-
abilities, we have to specify the properties of the growth
process. Here we use the standard DBM (bond) growth
process, so these probabilities are just related to the po-
tentials of sites 1 and 2 in Fig. 37(a). These potentials are
given by the solutions of the Laplace equation that for
this simple configuration can be computed analytically,

b, =8=0.5244 ,
(7.19)
$,=£=0.1463 .

The probabilities corresponding to these growth pro-
cesses are indicated by p; ;, where the first index (i) refers
to the site that is going to be occupied and the second
one (j) to the order of the process that is given by the
number of particles that have been added to the structure
(except the first trivial one). Note that these site proba-
bilities correspond to the sum of the various bond proba-
bilities leading to the considered site. The first-order
growth probabilities are then

Pt g gy
(7.20)

P11 =1—p,,(n),

where 7 is the usual DBM parameter.

If the event corresponding to p, ;(7) takes place, site 2
of Fig. 37(a) gets occupied at first order, and the cell fol-
lowing the initial one will be of type 2 asymptotically
[Fig. 37(c)].

If, instead, p, ;(7n) occurs, this cell remains of type 1,
but higher-order processes may still lead to the occupa-
tion of its second site. For the second-order process, we
have

D =———2L (7.21)
Y g1+2¢7+2¢7 '

where the potentials refer now to Fig. 37(b) and their
values are (Pietronero et al., 1988a, 1988b)

$,=0.5245 ,
$,=0.1471 , (7.22)
$;=0.0392

Therefore the probability that the configuration above
the starting one will be of type 2, after infinite growth,
gives the FST matrix element M, ,. This can be written
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as

M, (M)=py (M) +[1=py (M ]ps () + -+,

and, in principle, the series should be continued until the
probability of occupation of site 2 in Fig. 37(a) is virtual-
ly saturated (freezing condition). It is important to note,
however, that higher-order terms in this series corre-
spond to configurations in which this site is exponentially
screened by growth that has occurred at other sites [see
Fig. 37(b), in which site 3 is the original site 2 of Fig.
37(a)].

This screening effect is crucial because it allows rapid
convergence of the series given by Eq. (7.23) to a number
smaller than 1. This is the key point for the formation of
fractal structures. In fact, if asymptotically

(7.23)

Ml’l('ﬂ)=1’—M1,2(7’)>0, (7.24)

there is a finite probability that growth will leave empty
sites. From studies of scale-invariant growth rules, we
have seen that screening persists in asymptotic behavior.
Therefore Eq. (7.24), together with scale-invariant dy-
namics, implies that holes will be generated at all scales
with a finite probability, which is a characteristic of frac-
tal structures.

This conclusion holds for any finite value of . In the
Eden limit (p=0), we saw instead (Sec. IV.C) that the
terms of the series decay only as power laws with respect
to the order. This fact is due to the suppression of
screening, and it leads asymptotically to a compact struc-
ture. The possibility of distinguishing between fractal
and nonfractal structures is one of the main results of the
FST approach.

For the DLA case (=1), we obtain

M, (1)=0.3581,
M, ,(11)=0.4142 ,

(7.25)
(7.26)

respectively, at first and second order.

We then have to compute the other matrix elements
that correspond to a starting configuration of type 2.
The calculation is analogous to the one we have discussed
(Pietronero et al., 1988b), and the results are

M, (D=1—M, ,(1)=0.5609 ,
MZ’I(II)=1—M2,2(II)=0.4944 .

(7.27)
(7.28)

The fixed point is then given by Eq. (4.16), and the cor-
responding values of the fractal dimensions are

D(I)=1.4747 ,
D(I1)=1.5418 .

(7.29)
(7.30)

It is not difficult to proceed along the lines indicated
and also compute higher-order terms. By going up to
fifth order, one observes a rapid convergence towards
D=1.55. This value can be considered essentially as a
lower bound because of two reasons:

(a) The use of closed (periodic) boundary conditions
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enhances the screening effects and tends to reduce the
value of the fractal dimension.

(b) The use of minimal-scale growth rules gives rise to
a similar effect. In fact, the asymptotic scale-invariant
growth rules show the asymptotic persistence of screen-
ing. However, screening effects are slightly reduced with
respect to those corresponding to the direct use of the
Laplace equation.

We can easily improve with respect to the first point by
considering the possibility of fluctuations in the boundary
conditions for the growing structure. This is the point
that makes the FST more accurate with respect to the
usual real-space methods. We can include this effect in
the open-closed approximation, as discussed in Sec. IV.D
and which we have already used extensively in the previ-
ous models. This requires the calculation of FST matrix
elements also for “open” configurations. The details of
these calculations can be found in Pietronero et al.
(1988b). The results of the open-closed approximation
for second and third order are

D(I1)=1.6080 ,
D(IIT)=1.6406 .

(7.31)
(7.32)

By comparing these results with the value D =1.5 cor-
responding to the asymptotic (with respect to order) re-
sult of the calculation with only closed configurations, we
can see that the self-consistent treatment of boundary-
condition fluctuations produces a substantial improve-
ment in the results.

The calculations can be easily generalized to values of
n71 as shown in Pietronero et al. (1988b). The case of
7n=0 (Eden) requires particular care, because the conver-
gence of the series becomes slow. It is easy to show, how-
ever (Sec. IV.D), that this case leads to a compact non-
fractal structure (D =2).

2. Empty configurations

The calculation of fractal dimension for DLA and the
DBM in 2—d that we have discussed is based on a
simplified FST scheme. It is important to remark, how-
ever, that each of these simplifications can be tested in
detail, and eventually the theory can be extended corre-
spondingly. For example, in Sec. IV.E, we have seen
that the restriction of the FST to only two configurations
is actually an approximation, but it is possible to improve
the situation by also including explicitly the empty
configurations. The problem arises when one tries to
compute the relatjve probabilities of occurrence via a
dynamical evolution as we do in the FST scheme. In
fact, strictly speaking, any configuration will eventually
evolve into an empty one. This reflects the fact that,
asymptotically, a fractal has zero density. In the simple
scheme we usually adopt, the empty configurations are
eliminated by requiring a condition of connectivity
within a single column. However, empty configurations
can be included explicitly in the dynamics, and only at
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the end are the relative probabilities for nonempty
configurations computed. In this way it is possible, for
example, to compute the effect of over-hangs on these rel-
ative probabilities. The corresponding result, including
the empty configurations, is (Vespignani and Pietronero,
1990)

D=1.6242 . (7.33)

This leads therefore to the following conclusions: (a)
The effect of empty configurations in the FST scheme is
small, and the simplified scheme is already rather good;
and (b) for DLA in 2-d, the explicit inclusion of empty
configurations decreases fractal dimension by about 1%.

3. Multifractal properties of the growth probability

Since the introduction of multifractality, there has
been a large amount of work aimed at the characteriza-
tion of the growth probability distribution for DLA in
terms of a multifractal spectrum. The situation turned
out to be more complex than expected because, even
though some multifractal features are present, there is
also evidence that a simple multifractal scheme is not
suitable for reproducing all the scaling properties, and
the situation is still rather controversial, as we discussed
in Sec. II.

From the standpoint of the FST, the growth probabili-
ties are used to compute the matrix elements directly
without the need for introducing a multifractal spectrum
explicitly. It is possible, however, to compute the regular
part of the multifractal spectrum corresponding to these
probabilities as a by-product of the FST method. For a
given order of the FST calculation, one is left with a
frozen portion of the structure above which there is a
configuration that represents the growing interface. The
various sets of the growth probabilities that appear in
these configurations can be considered the nucleus of the

multiplicative process from which the multifractal prop-
erties can be extracted (Marsili and Pietronero, 1991).
Several questions remain, however, because the usual
multifractal scheme does not appear to describe the prop-
erties of the growth probability in a complete way.
Features like the self-affinity of the support and the an-
isotropy of correlations probably give rise to a situation
that is more complex than the usual multifractal scheme.

C. Diffusion-limited aggregation and
dielectric breakdown model in three dimensions

The FST approach for DLA and the DBM can be nat-
urally extended to three dimensions (Vespignani and
Pietronero, 1990). The differences are essentially techni-
cal:

(a) In three dimensions the intersection is done with a
plane, and the basic configurations are five instead of
two. This leads to a 5X 5 FST matrix.

(b) In the explicit calculation of FST matrix elements,
it is necessary to consider growth processes up to a rela-
tively high order to achieve an accuracy comparable to
the two-dimensional calculations. The corresponding
probability tree is therefore rather complex, and it is
necessary to develop a computer algorithm for the calcu-
lation of these matrix elements.

(c) The analysis of the boundary-condition fluctuations
is also more complex.

Our best scheme of calculation gives the following re-
sults for the DBM in three dimensions (Vespignani and
Pietronero, 1991),

n=1 D=2.54 [2.50], (7.34)
n=2 D=2.17 [2.13], (7.35)
n=3 D=1.91 [1.89], (7.36)

where in brackets we report the values obtained with
computer simulations.
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D. Fixed-scale transformation for diffusion-limited
aggregation and dielectric breakdown model with
renormalized growth rules

We have seen that, in order to relate the FST to the
fractal dimension, it is necessary to use scale-invariant
growth rules. We have studied this question in Sec.
VIL A, and the main result is that the crucial parameter
that appears in the renormalization of the growth rules is
an effective noise reduction. This point can be improved
by considering the FST with growth rules in which S* is
different from 1.

In practice, this implies that the growth probabilities
are not computed directly by the solutions of the Laplace
equation, but instead they are given by the multinomial
distribution of Eq. (7.12).

The calculation proceeds, otherwise, along the previ-
ous lines. The results for the fractal dimension for
different values of S* are shown in Fig. 38. Since in Sec.
VIL.A we derived S*~2.4, the corresponding fractal di-
mension is D ~1.70, which should be compared with the
value D =1.64 derived with small-scale growth rules.

We summarize with the following scheme of increasing
completeness for the fractal dimension of DLA in 2-d de-
rived with the FST method (Table IV).

(a) The use of small-scale growth rules and only closed
(periodic) boundary conditions gives D =1.55.

(b) The inclusion of the fluctuations of boundary condi-

tions in the open-closed scheme up to third order gives
D=1.64.

(c) The explicit inclusion of empty configurations de-
creases this value by about 1%.

(d) The use of renormalized growth rules with $* ~2.4
instead of the small-scale ones (S=1) leads to an
enhancement of about D =1.70.

It is important to notice that, even though the FST
scheme is not strictly systematic in a mathematical sense,
the various effects can be analyzed explicitly and estimat-
ed quantitatively. In order to proceed along this line of
increasing sophistication, it is important to clarify the
origin of the discrepancies that appear in the computer
simulations.

E. Topological properties: Backbone

As for the case of the percolating cluster (Sec. V), so
for the DLA/DBM clusters it is possible to define sub-
structures selected by their topological properties. In
view of the fact that the growth probability is governed
by the Laplace equation, it is not possible to have closed
loops in a DLA/DBM cluster. Therefore the backbone
and the chemical distance coincide for these clusters.

Simulations studies of the properties of the backbone
indicate that its dimension is D, ~1 in any Euclidean di-
mension. This is an important result: It identifies a qual-

TABLE IV. Detailed FST analysis for DLA/DBM in two dimensions. Fractal dimensions computed
with FST schemes of increasing complexity are reported (for references, see text).

Method

Fractal dimension

Computer simulations

Circular geometry:
Mass-length relation
Density-density correlation
Box counting

Cylinder geometry:
Box counting

FST with small-scale growth dynamics:
Closed boundary conditions
Open-closed scheme
Inclusion of empty configurations

Scale-invariant dynamics

(Spontaneous proliferation with respect to
the renormalization of noise reduction S)

FST with scale-invariant dynamics
(S=2.4)
Open-closed scheme

1.715
1.67(0.01)
1.60-1.65

1.60-1.65

1.55 (lower bound)
1.6406 (reference value for further
improvements)
1.6242

Self-organization: attractive
fixed point

Fixed-point value: S*=2.4

[The corresponding growth probabilities are close
to those of the small-scale dynamics (S =1).]

1.70°

#Should be considered with respect to the open-closed scheme.
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(@ (b)

FIG. 39. Configurations involved in the calculation of the frac-
tal dimension of the DLA backbone. Configuration (a) contrib-
utes to the matrix element M; ; because only site 1 belongs to
the backbone. In configuration (b), instead, sites 1 and 2 both
belong to the backbone, giving a matrix element of type M ,.

itative difference between DLA/DBM clusters and the
percolating cluster. Furthermore, the fact that D, never
approaches the value of a random walk (D, =2) for high
space dimensions can be related to the absence of an
upper critical dimension for these growth models. From
the standpoint of the FST method, it is easy to consider
the problem of the calculation of the fractal dimension of
the backbone. The basic point is that one must define the
essential configurations and the corresponding probabili-
ties (C,C,) only for the sites or bonds belonging to the
backbone. In practice, for each growth configuration,
one must first define the backbone and then identify the
corresponding configurations. Figure 39(a) shows a
configuration of type 1 being followed, in the growth
direction, by a configuration of type 1. This is because
only site 1 belongs to the backbone, while site 2 does not.
In Fig. 39(b), instead, points 1 and 2 both belong to the
backbone.

In this way one can easily generalize all the previous
calculations to the fractal dimension of the backbone,
too. Up to third order, we obtain

D;~1.04 . (7.37)

This value is substantially smaller than the chemical
distance of the percolating cluster (D=1.17), and it
represents a reasonable indication that the real value
could be exactly 1. In order to check the eventual con-
vergence to this value, it is necessary to consider
configurations with more than two sites.

Vill. FRACTAL-GROWTH PHENOMENA

In this section we show the application of the FST
method to other nonlocal growth models of general in-
terest. These models are nonlocal in the sense that they
are governed by a growth probability distribution which
is influenced by the distant points of the structure and,
for this reason, they exhibit the same theoretical prob-
lems as DLA. In addition, they present some further
complications which make them particularly interesting
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from a theoretical point of view. For instance, the CCA
model is strictly related to the diffusive nature of DLA.
However, the clustering process is due to aggregates of
different sizes; so different scale dynamics are necessary
to describe the system. This makes it very difficult even
to formulate the problem from the standpoint of the
renormalization-group method.

The Born model for fracture is a natural extension of
the DBM. In fact, this model is defined in the same spirit
as the DBM, by replacing the Laplace equation with the
Born elastic equation in order to define the growth prob-
ability field. This introduces in the growth model the
tensorial nature of elasticity, which is very challenging
for an analytical treatment.

The particle-cluster aggregation with Levy flight parti-
cle walks has been introduced to explore the effect of
fractal trajectories on aggregation. This model enhances
the long-range effects contained in DLA in view of the
long-range correlations present in the Levy flight. We
shall see that the FST method can be extended in a natu-
ral way to all these other models. This seems to indicate
that in this field the conceptual problems posed by DLA
and the DBM are really the central ones. In addition,
the fact that the FST can easily be generalized to other
models indicates that this method introduces the ap-
propriate theoretical perspective in this field.

A. Cluster-cluster aggregation model

The cluster-cluster aggregation model (CCA; Kolb
et al., 1983; Meakin, 1983) is one of the most studied
problems of fractal growth because it describes a large
amount of interesting physical phenomena in the field of
colloids, polymer solutions, and gels (Jullien and Botet,
1987; Vicsek, 1992). The CCA model is usually defined
on a square lattice with periodic boundary conditions in
which N initial particles are distributed randomly. These
particles diffuse by performing a Brownian motion on the
lattice and, if they occupy adjacent sites at a given time,
they will stick together irreversibly and give rise to larger
clusters. These clusters move with a probability of
motion proportional to the diffusion coefficient (p,) that
is linked to their mass s by the relation

pa=cs?, (8.1)

where the exponent ¥ depends on the physical process
that one intends to describe (Vicsek, 1992). The asymp-
totic properties of the cluster usually depend on the value
of y. The classical understanding of CCA focuses on the
mean distribution as given by the mean-field Smolu-
chowski equation (Smoluchowski, 1916; Jullien and
Botet, 1987). In this equation the approximation used is
to neglect the space dependence of all physical quantities,
so it cannot provide any information about the geometri-
cal characteristics of clusters, i.e., the fractal dimension.
For y <0, the aggregation process is homogeneous in
space, and the mean-field assumption of the Smolu-
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chowski equation is satisfied. In this situation, which is
also the most relevant physically, the value of the fractal
dimension of clusters obtained from computer simulation
is ‘

D =~1.454+0.05 (d=2),

(8.2)
D =~1.8%0.05 (d=3),

and it is independent of the value of . We refer here to
the so-called steady state in which asymptotic behavior is
well defined (Vicsek et al., 1985). If, instead, y >0, the
model will correspond to the unusual situation in which
large aggregates move faster than small ones. In this
case, the aggregation process is not homogeneous in
space, and the fractal dimension increases continuously
from D ~1.45 to the DLA value, D ~1.7, that is reached
for ¥y =22. An important amount of information on the
CCA process is given by the knowledge of the mass dis-
tribution of the aggregates n,, both as a function of time
and in the steady-state regime. The n (?) curves, ob-
tained from simulations at different times (Vicsek and
Family, 1984; Vicsek, Meakin, and Family, 1985), show
either a bell-shaped behavior or a power law with ex-
ponent a <2:

ng(t)=t"¥s (s /t?), (8.3)
depending on the range of values of the exponent y.
However, it is necessary to distinguish clearly between
some aspects of the n,(z) due to finite-size effects and the
properties we are interested in, i.e., the properties around
the s value where at fixed time the aggregation is espe-
cially occurring. In fact, the simulations with fixed num-
ber of particles unavoidably introduce at long times a
finite-size effect in the n,(z) distribution, due to the disap-
pearance of small aggregates in favor of large ones. This
is the origin of the deviation from a power law in the
ng(t) distribution. By the way, around the value s ~t?,
that is, the typical mass of clusters at time ¢, the ny(¢)is a
power law in s with exponent @=2.0 (Leyvraz, 1986; Jul-
lien and Botet, 1987; Vicsek, 1992). In order to avoid
this complication, it is better to study this distribution
for a stationary state. To achieve the CCA steady-state
regime, one introduces a ‘“‘source and sinks” technique,
corresponding to having an upper cutoff in the cluster’s
mass and a seed of k particles added each unitary time in-
crement. In this condition, after long enough time, the
time dependence of n(¢) disappears and we observe a
power-law behavior

nis)~s ¢ (8.4)

with a=2 (Vicsek, Meakin, and Family, 1985). This is
actually the behavior predicted by the Smoluchowski
theory (Leyvraz, 1986). The properties of n(s) are funda-
mental for the discussion of the CCA phenomenon. In
fact, the growth process can be due to incoming aggre-
gates of different sizes, and the mass distribution is a
basic element for the characterization of the dynamical
aggregation processes. As we shall see later, this is the
key point that differentiates CCA from DLA. For in-
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stance, let us consider the dynamics of the growth pro-
cess at a generic scale of size r,. We can distinguish be-
tween three possibilities. The first one is that the growth
process is due to clusters of size » >r,. The second possi-
bility is that r ~r,, and in the third case r <r7,. Clearly,
the relevant contribution to the growth process is given
by the clusters of size comparable to or larger than the
resolution scale r,. In fact, a large number of small clus-
ters will be necessary in order to give an appreciable con-
tribution to growth at scale 7, and, at a low order of ap-
proximation, they can be neglected. Therefore the basic
element for the dynamical process is the relative proba-
bility K, that the growth process will be due to an in-
coming particle with size r of the order of 7,
(r,_y<r<r,) or to a cluster of larger size (r >r,). Con-
sidering that, in the steady-state regime, the mass s and
the size 7 are related by S ~r?, we can compute this ratio
as

P(r,) f,r"

n(r)r?lar
n—1

K = =
" P(r,)+P(r>r,) fw n(r)r®~dr

Tn—1

4
=1— i
Fn—1

where n(r) is the cluster size distribution obtained from
Eq. (9.4). However, the fractal dimension cannot be
computed from this equation that is derived in a mean-
field approximation. By the way, since K, is a power
law, it is scale invariant, and we can use Eq. (4.5) as the
starting point of our FST approach to CCA.

(1—a)D
, (8.5)

B. Analytical calculation of cluster-cluster aggregation
fractal dimension with the fixed-scale
transformation approach

Our discussion of the explicit calculation of fractal di-
mension is based on a scheme similar to the one original-
ly introduced for DLA, and here we focus mainly on the
differences introduced by the CCA process. The starting
point consists in the calculation of the matrix elements
M, ; using scale-invariant dynamics. In the CCA model,
the problem is, in a certain sense, simpler than for DLA.
In fact, the relevant contributions to the growth process
are given by the clusters of size r, or larger, for which
the probability of aggregation is given by the Laplace
equation valid at each scale. This is because at all scales
the clusters of size of the order 7, can be considered as
single particles whose dynamics is the microscopic one.
The renormalization of the aggregation of small clusters,
or single particles, which is the main problem for DLA
dynamics, can instead be neglected in CCA. In this sense
the use of the microscopic dynamics as the scale-
invariant one corresponds to neglecting the contributions
of particles smaller than the coarse-graining size.

We are now in a position to compute explicitly the
FST matrix elements. The aggregation is characterized
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by the aggregation process of clusters of size r, or larger,
with the corresponding relative probabilities given by Eq.
(8.5). These can be expressed self-consistently as a func-
tion of C;; and for the d =2 case, we obtain

(1—a)[1+1n(C, +2C,)/In(2)]

K,=1-2 (8.6)

As an example of the calculation of matrix elements,
we can consider the growth processes that originate from
a frozen configuration of type 1. With probability K, the
next cluster that comes in contact with our starting
configuration is of size r, (the same as the coarse-
graining level considered). In this case the cluster is
represented by a single site, and it will occupy the site
above the occupied one of the starting cell. This corre-
sponds to the zero-order growth process in the DLA
scheme. With probability 1—XK, a larger cluster (r>r,)
arrives. This gives rise to two possibilities, as shown in
Fig. 40. The larger aggregate (shaded region) can occupy
a single site (above the starting cell) with probability C,,
or both sites with probability C,. This is because we as-
sume that in the steady-state regime the arriving aggre-
gates will have the same fractal dimension that we will
compute in the end, characterized by the same distribu-
tion (C,C,). After the arrival of a large aggregate, the
probability tree is stopped because the eventual empty
site above the starting cell is considered fully screened.
At zero order we have therefore

M, =K+(1—-K)C,, M,=(1—K)C, . 8.7)

When a single particle arrives (of size r=r,), the
growth process should instead be continued. Again with
probability 1—K, a large aggregate arrives, but in this
case it will stick to the tip of the growing cluster that is
now one step higher. The probability that the incoming
aggregate will penetrate to occupy the empty site above
the starting cell is now of higher order, and (for the mo-
ment) we neglect it. With probability K, the incoming
aggregate has the size of a single cell, and the process is

(a) (b)

FIG. 40. We consider the growth process conditional to a start-
ing configuration of given type. With probability 1—k, a large
aggregate arrives (shaded region), and this can lead to two pos-
sibilities: the occupation of either a single site (a) or both sites
(b) above the starting configuration.
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analogous to DLA. It is possible to extend the construc-
tion of the probability tree to higher orders, and the gen-
eral expression for the matrix element at order [ is
(Sidoretti and Vespignani, 1992; Pietronero et al., 1993)

M, (D=(1—K)C, +(1—K)K

-1
+ 3 K" 1—K)MPA (n)

n=1
+K!"T MDA, (8.8)

where M} (n) corresponds to the DLA matrix element
of order n, as discussed in Sec. VIL.B.

It is important to notice that the incoming of large
clusters produces a faster freezing effect, which is
reflected in the fact that the matrix elements consist of
power series in K and therefore the convergence is faster
than in DLA. For this reason we can draw the general
conclusion that

DCCA S‘DDLA . (8.9)

In analogy with the DLA model and the DBM, we
have used, in the explicit calculation of the matrix ele-
ments, the simplest nontrivial scheme to include self-
consistently the fluctuations of the boundary conditions.
This is the open-closed approximation, and it is possible
in this case to derive analytically the fixed-point distribu-
tion (C;,C,). In Table V the results obtained for fractal
dimension up to third order of calculation are compared
with the best simulation results actually available. The
result D =1.39 obtained for the cluster-cluster model at
third order can be compared with the DLA result at the
same order, D =1.64. Actually, we are making an ap-
proximation in the calculus considering the starting cell
fully screened as soon as a large cluster reaches the tip of
the growing cluster. This is not completely true for the
case of open boundary conditions, because of the possibil-
ity of lateral growths. Anyway, this correlation can be
evaluated (Sidoretti and Vespignani, 1992), and it gives
small contributions that increase by about 2% the value
of D.

The approach can be naturally extended to the three-
dimensional CCA. Even in this case the n(t) is a power
law with exponent a=2. The development of the
method is the same as in two dimensions; nevertheless,
several technical complications occur in the practical cal-
culation of the matrix elements. This is because, as in the
three-dimensional DLA, higher Euclidean dimensions in-
crease the complications of the proper treatment for the
boundary conditions. In Table V we also show the result
obtained for the 3—d CCA fractal dimension. That is
also in good agreement with the simulations. The FST
application to the CCA model is particularly relevant,
because it allows the first analytical treatment of a prob-
lem which cannot even be formulated with the usual
theoretical methods, as, for example, the RSRG method.
On the contrary, the FST can be easily extended to study
quantitatively the fractal features of the CCA model.
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This shows the systematicity and the high suitability of
this method for treating fractal-growth models.

C. Born model for fracture

A wide variety of models based on deterministic or
probabilistic growth processes has been introduced in or-
der to characterize the fractal properties of fracture pat-
terns. Two of the most extensively studied models are
the central force model (Luis and Guinea, 1987) and its
improvement (Yan et al., 1989), which introduces non-
central forces by using the Born model for the elastic en-
ergy. The latter model is the analogous of the DBM La-
placian growth for fracture propagation, describing very
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simply the fracture propagation controlled by growth in-
stabilities (probabilistic mechanism) and allowing us to
take into account the vectorial nature of the problem.
The Born model represents the elastic potential of a net-
work of elastic springs with two terms, corresponding to
the central and noncentral force contribution,

V= %(a—B)E [(w;—w;)r; PP+ %32 [0, —u; 1%,
i,j ij

(8.10)

where u; is the displacement vector, 7;; is the unit vector,
and a and B are force constants. The patterns generated
with this model have a well-defined fractal dimension

TABLE V. Fractal dimension for the most-studied fractal-growth models computed with the FST
method. The results are compared with the simulation best estimates (for references, see text).

Model D simulation D FST
(best estimate)

Eden model (d =2) 2.0(0.1) 2.0 (extrapolation, slow convergency)
(bulk dimension)
DLA/DBM (d =2)
Cluster:

DLA (DBM, 7=1) 1.60-1.71 1.64-1.71

(for details, see Table III) (for details, see Table IV)
DBM, =2 1.40-1.45 1.43
DBM, 1=0.5 1.85-1.90 1.78 (slow convergency,
close to Eden limit)

Backbone 1.00(0.05) 1.04
DLA/DBM (d =3)
Cluster:

DLA (DBM, n=1) 2.5(0.1) 2.54

DBM, =2 2.13(0.1) 2.17

DBM, =3 1.89(0.1) 191
Cluster-cluster
aggregation

d=2 1.45(0.05) 1.39

d=3 1.80(0.05) 1.90
Born model for
fracture (d =2)

-96—
a=1; =0 1.52(0.04) 1.56
=1; p=0,1 1.68(0.03) 1.65

Fractal aggregation with
levy flight trajectories

f=1.33 1.88 1.85

f=1.66 1.80 1.82

f=2.0 1.75 1.76
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that depends upon the internal parameter of the model
(see Table V). In particular, numerical results (Caldarelli
et al., 1994) show that the fractal dimension changes
continuously with the ratio (8/a), reaching an asymptot-
ic value for B/a—0. This numerical evidence is also
supported by renormalization arguments (Caldarelli
et al., 1995),

The FST approach to this model can be developed
along the usual lines, considering, however, the tensorial
nature of the problem. This is reflected in the fact that
the model is intrinsically defined as a bond problem on a
triangular lattice. The main differences from DLA are
(a) the probability field is given by the tensorial equation
(8.10); and (b) bonds between occupied sites can still
crack in the future. This leads, for technical reasons, to a
different definition of the fine-graining configurations that
are now characterized with respect to the broken bonds.
In addition, the definition of “growth” column is slightly
modified (Caldarelli et al., 1995). After these changes
have been made, the calculations are performed in the
usual ways; the results are reported in Table V. It is im-
portant to note that we have to go to high orders in the
calculus of the matrix elements (VI order for =0, VII
order for =0,01) in order to obtain reliable results. The
reason for this is that screening is reduced by the tensori-
al nature of the problem.

The agreement with simulations is rather good, partic-
ularly for the case =0. For values of 8 other than zero,
the convergence of the matrix elements is slower, and
that is why the value of the fractal dimension is lower
than the simulations values.

D. Levy flight clusters

In particle-cluster aggregation, the particle trajectory
plays a crucial role. In fact, it is the trajectory that deter-
mines the density of the structure (i.e., the fractal dimen-
sion). For instance, a Brownian motion with dimen-
sionality D, =2 is more effective than a linear trajectory
D,=1 in preventing particles from penetrating into the
voids of the structure, and such notion leads to structures
with a lower fractal dimension. For this reason, it is in-
teresting to consider the relationship between the dimen-
sionality of the particle’s walk and the fractal dimension
of the aggregates.

To construct a particle trajectory with a well-defined
fractal dimension, it is possible to use a generalization of
the random walk in which the length of the step x follows
a random distribution, satisfying the conditions

P(x=A)=A"7, (8.11)

P(x <1)=0. (8.12)

Here, the probability P(x =A) is the probability that
the length of the step will be greater than or equal to A.
This type of trajectory with 1< f <2 is called Levy flight
and has a dimensionality D, =f. Clearly, the Levy flight
has, by definition, long-range, power-law correlations
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into the paths followed by the particles, which affect
strongly the fractal dimension of the resulting aggregates.
Simulations have been carried out on this model using
both lattice and off-lattice techniques (Meakin et al.,
1984). The fractal dimension depends on the values of
the parameter f, which describes the Levy flight trajecto-
ry, and the results show a continuous variation between
the limits given by the DLA model (corresponding to
f— ) and the Vold-Sutherland model (corresponding
to f—0) that gives rise to compact structures. If the pa-
rameter f is in the range 1.0-2.0, the fractal dimension
of the aggregate will decrease continuously as the dimen-
sionality of the trajectories D, increases. For f larger
than 2, D,=2; but the fractal dimension of the aggregates
seems take on a range of values (Meakin, 1984). This last
point seems quite strange, because the particle trajec-
tories are Brownian for any f >2. However, the inter-
play between the particle trajectories and the aggregation
process might be the origin of this effect. In Table V are
reported the values of fractal dimension obtained for cir-
cular geometry and several values of f.

The extension of the FST approach to this model is
conceptually straightforward and can be done along the
lines of the two-dimensional DLA calculations (see Sec.
VII). However, the calculation of the matrix elements is
substantially more complex. In fact, in these cases the
evaluation of the elementary growth processes to be used
in the matrix elements cannot be done analytically. For
ordinary DLA (f— ), the growth probabilities were
evaluated, solving the discretized Laplace equation in the
growth columns. This is not possible for Levy flight,
where the probability of finding a diffusing particle at a
given point is not defined by a differential equation, but
from the still unclear fractional differential calculus,
which is very difficult to use for quantitative calculations.

For this reason, a simple Monte Carlo method has
been used to evaluate the matrix elements. This consists
in finding the elementary growth processes by using a
Monte Carlo procedure in which particles diffuse and
perform a Levy flight in the columns of growth. After
enough time steps, the probability of each site’s being
visited becomes stable and defines the matrix elements.
Clearly, we must need the boundary conditions inside
(adsorbing condition on the grown sites) and outside
(closed and open boundary conditions) the growth
columns. This procedure must be repeated for all the
growth configurations involved in the calculation of the
matrix elements. Apart from the calculation of the quan-
titative values of the growth probability, we use the same
schemes as those used for standard DLA. Table V re-
ports the values obtained for different values of the Levy
exponent f. Clearly, the closer f is to zero, the more
penetrating is the walk of the diffusing particles inside
the structure. This corresponds to increasing fractal di-
mensions, which are well recovered with the FST calcula-
tion. In addition, Table V shows that the FST method is
able to obtain reliable results for the fractal dimension in
the full range of the exponents f. In this respect, it is im-
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portant to notice that the freezing condition is slowly
reached for small values of f, and the calculation has
been extended up to fifth order to achieve a good conver-
gence (Zaratti et al., 1995).

IX. RELATIONSHIP TO PATH INTEGRALS AND OTHER
METHODS OF DYNAMICAL CRITICAL PHENOMENA

A. Dynamical critical phenomena and fractal growth

Second-order phase transitions are distinguished by
diverging relaxation times (7) as well as diverging corre-
lation lengths (£), and the dynamical critical exponent z
can be defined via

T~E& . 9.1)
For fractal growth, at the microscopic level, time can be
directly measured by the number of aggregated particles.
Identifying the correlation length with, say, the radius of
gyration of the cluster, one sees from N ~RP that the
fractal dimension D can be thought of as a dynamical
critical exponent. Under a coarse graining of the lengths,
R —R'=R /b, then, time should rescale in the same way
as the mass, namely, t'~N'~N/b®. This is indeed the
case, since, as shown in Sec. VII, the noise-reduction pa-
rameters stays finite under successive coarse-graining
operations.

With this analogy in mind, we may recall the mode-
coupling theory of critical phenomena (Gunton, 1979).
The first step is to identify the relevant “slow” modes for
which, at the critical point, the correlation lengths, sus-
ceptibilities, and transport coefficients are likely to
diverge. Within the FST approach, we identified (see
Secs. III and IV) two modes, the uniform and symmetry-
breaking cell states of fype 1 and 2, within a hierarchical
ansatz for the projections of the fractal onto transverse
subsets. Then we were able to write equations of motion
for the C;, the amplitudes of these modes, under a
translation in the growth direction. This is the fixed-
scale transformation, and it is in complete analogy with
the equations of motion with respect to time in the mode-
coupling approach. Note that the amplitude of one of
the modes we chose, the symmetry-breaking one, can be
thought of as a sort of order parameter for fractal (as op-
posed to compact) growth.

In mode-coupling theory, projection of the microstates
onto the slow varying modes introduces memory effects
into the equations of motion. In our case, these come
about because the equations of motion connect projec-
tions of the “frozen” fractal cluster onto successive trans-
verse subsets. As will be discussed at length below, at the
expense of enlarging our phase space and integrating
over intermediate states, we are once more able to cast
the problem in Markovian form.

To extract the scaling behavior, in mode-coupling
theory one converts (Gunton, 1979) the equation of
motion into equations for the propagator or two-point
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equal time correlation function (in the simplest case,
there will be only one independent correlation function in
the problem), and finds I'(q)~g¢g? where g is the wave
number.

The route we follow is quite similar. The “equations of
motion” solved for the steady state yield the amplitudes
C; in terms of the “kinetic coefficients” M;;. In two di-
mensions, the expectation value of the total occupation
number of the two site states {n,;+n,)=C,+2C, [Eq.
(4.2)] can be seen as a two-point correlation function, or a
Green’s function in the transverse subspace, since it is
the probability that, given the first site’s being occupied,
the second site will also be occupied, normalized by the
total possible occupation number. One then reads off the
fractal dimension from (n,+n,)=27.

The most important accomplishment of both ap-
proaches is the derivation of the approximate equations
of motion for a set of ‘“‘gross variables” from the micro-
scopic Liouville equations in one case and the growth
rules in the other. As discussed by Gunton (1979), these
“semi-phenomenological” equations in the context of
critical dynamics in fact form the basis of both the
mode-coupling theory and the renormalization-group
equations, and in what follows we shall find that the same
is true for the fixed-point equations for the FST, in the
case of fractal growth.

B. Path-integral approaches to fractal growth

Field-theoretic methods based on a path-integral for-
mulation of stochastic dynamics have been brought to
bear on dynamical critical phenomena (De Dominicis,
1975; De Dominicis et al., 1975) and other more general
Markovian processes (De Dominicis, 1976; see Janssen,
1979, and references therein). The dynamical renormal-
ization group (Halperin et al., 1972; De Dominicis and
Peliti, 1977, 1978; Hohenberg and Halperin, 1977) gives
us a complete theory of critical dynamics. The path-
integral approach has recently been extended to fractal-
growth models by Parisi and Zhang (1985), Shapir and
Zhang (1986), and Peliti (1985), among others
(Grassberger and de la Torre, 1979; Cardy and Sugar,
1980; Grassberger, 1982; Elderfield, 1985a, 1985b).
Path-integral formalism, in principle, provides us with a
systematic way to generate all possible histories, together
with their weights, along which irreversible aggregation
clusters might evolve. However, due to the nonlocality
of the resulting field theories, no perturbative computa-
tions have ©been possible, and no general
renormalization-group results are available.

In what follows we shall briefly remind the reader of
the Fock-space formalism (Peliti, 1985) used in these ap-
proaches, and then use this formalism to cast the
“growth rules” in the form of microscopic Liouville
operators. We shall then construct the FST within this
framework.

It is common to start from a Fock-space (occupation
number) representation, where the macroscopic state at
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any time ¢ is represented by

&) =T ¢(n;t)ln), 9.2)
n

where ¢(n;t) are the probabilities of finding the system

in the state |n ), at time z. The set {n,} =n of occupation

numbers at the sites » on the lattice specify the micro-

states (Peliti, 1985). The state space is spanned by |n ),

with the “exclusive” scalar product

(m|n)=TImS5, ., -

We shall also need the ‘“standard bra
(|=3,(1/11,n,1){n| introduced by Peliti (1985).

The probabilities ¢(n;z) evolve according to the
growth rules, and for Markovian processes it is possible
to write the differential equation for the time-dependent
macrostates,

d|®(t))
dt

where L is the Liouville operator. L can be expressed in
terms of creation and annihilation operators (a,,,),
with a,,7,,.=3, ,» and

(9.3)

’

=L|®d(2)) , 9.4)

a,l..n,...0=nl...n,—1,...),

(9.5)
T looon, . .0=|..,n+1,...).

Note that if we let T denote the one-time step evolution
operator, L =T —1 where 1 denotes the identity matrix.
Peliti (1985) has shown in detail that with the introduc-
tion of auxiliary fields, or “bookkeeping variables,” it is
always possible to represent processes with memory, as in
many irreversible aggregation models, also in this Mar-
kovian way. Integrating out the auxiliary fields and tak-
ing the continuum limit, one recovers the field theories
introduced, say, by Parisi and Zhang (1985), which are
nonlocal in space or time (Shapir and Zhang, 1986).

The formal solution of the differential equation (9.4) is

given by

|®(2)) =U,|®(0)) , 9.6)
where U, =exp(tL)=limy_, ,[1+(t/N)L]". Note that
Eq. (9.6), in principle, contains a complete description of
the process. However, the nonlocality of the action in
the path-integral representation of U, (Peliti, 1985)
makes any practical computation very problematic.

The usual route to computing scaling exponents within
this formalism would involve, at this point, an evaluation
of the two-point correlation function G(r,,t;r,,t,) using
renormalization-group methods.  This, for example, is
how the fractal dimension for directed percolation is ob-
tained by Cardy and Sugar (1980), using the
renormalization-group results of Migdal et al. (1974a,
1974b) and Abarbanel et al. (1976) for Reggeon field
theory (RFT). In the case of growth models, the time-
independent correlations in which we are interested
would strictly be achieved in the limit of infinite growth,

Rev. Mod. Phys., Vol. 67, No. 3, July 1995

or t— o in Eq. (9.6). In terms of Green’s functions, one
would therefore have to compute
G(ry,ry)= lim (|7, a, U,

—t
ty—>,t)—>® 2 1

™, a, |®(2)) .

9.7

Thus a detailed ansatz for the crossover behavior in 72 /2,
with r=|r;—r,| and t=|t,—¢,|, besides the asymptotic
scaling behavior, is called for. No such result is avail-
able, however, for the RFT-like theories for irreversible
aggregation models; even the Eden model has been treat-
ed only so far in the mean-field limit, and that only ap-
proximately. [Recent work (Ohno, Kikuchi, Yasuhara,
1992) based on numerical integration of a continuous
MFT for DLA might be a promising direction.]

C. Towards gross variables: The stationarity condition
and the hierarchical ansatz

Let us now try to understand how we are able to ex-
tract nontrivial scaling behavior with the FST with a
finite amount of labor.

The most important single piece of information we in-
ject into the problem at this point is that in a rectangular
geometry (with periodic boundary conditions) the growth
models in which we are interested exhibit a ‘“‘steady
state” (see Sec. II) with stable self-similarity properties in
the transverse direction up to the overall length scale
(Fig. 41) (Evertsz, 1989). Thus we are not interested in
the complete dynamical description of the growing ag-
gregate as represented by Eq. (9.6), but in a steady-state
solution for the projections of the macrostates |®(z)) on
manifolds perpendicular to the growth direction, which
we shall label y. We know that in the steady state the in-
tegrated growth probability decays exponentially with
the distance from the tip (Marsili and Pietronero, 1991),
so that for fixed y and large enough ¢, growth at the
height y can be considered as being effectively frozen and
the probability weights of the substates confined to y as
being independent of time. Let us denote these time-
independent transverse states with

W)= ¢(m;y)lm) . (9.8)

Here m has the same meaning as before, except that the
sites ¥ now run over a (d — 1)-dimensional subspace. The
stationarity condition with respect to translation in the
growth direction can now be expressed symbolically as

d|¥y)) _
& 0.

Solving this differential equation (in practice a difference
equation) is a much simpler task than solving the fully
time-dependent problem, Eq. (9.6).

Let us now cast the generalized cells description of
Sec. IV.A in Fock-space language. To keep the discus-
sion simple, we shall confine ourselves to two dimensions,

9.9
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thus to one-dimensional intersection sets. If m, denotes
the occupation number of a site r at a generic length
scale, we may group these sites into ‘“cells” containing
two sites each, and define the cell occupation numbers
m.=m,+m, —m,m,; with 7=(r+1)/2, r odd.
(This, of course, induces an analogous transformation on
the creation and annihilation operators, m,,a,. Note also
that the m, and m, take on only the values O or 1.) The
cell-state probabilities are then related to the ¥(m;y) via

‘()b(m],mz, BIRIRIR ((FY (T PR .)

=y(my,ms,...,m, ... ) [[¥m,m, Im) .
K4

(9.10)

We have suppressed, for the moment, the explicit depen-
dence of the weight functions on y. The vertical line
denotes conditionality as wusual, and we define
Y(u,v[0)=8, 8, . The probability weights of the inter-
nal states, ¥(u,v/+), are now assumed to be uniform in a
given intersection set, as well as being scale invariant.
This, together with Eq. (9.10), gives us the possibility of
overcoming the closure problem in a way that retains a
very high degree of complexity of the solution, unlike any
mean-field or effective-medium approach.

With the above assumptions, we can construct the
transverse macrostates (9.8) with the weights
Y(m,my,...,m,m, q,...), given P(u,v|l;y) at a
generic scale. Therefore we would like to be able to write
Eq. (9.9) directly for the reduced cell states
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IWZ(y»:z J(#,V;y )|/-"’V> ’
Wy

9.11)

where the probabilities ¢ have been normalized over the

nonempty cell states. Setting
C,=¢(1,0)+¢(0,1) ,
- 9.12)
C,=¢(1,1),

and labeling the cell states by their total occupation num-
ber, one has

(W)= Cyli) .

i=1,2

9.13)

The C;(y) are now our “gross variables,” and the fixed-
scale transformation is precisely the operator that gen-
erates a translation in the y direction in this space. To
keep the discussion simple, we shall now present the con-
struction of the FST just for “open” boundary condi-
tions; but it should be easy to see that the effects of the
neighboring cells and the void distribution, etc., can all
be taken into account.

D. The fixed-scale transformation as a
Markovian process

Translation in the y direction in the space of asymptot-
ically frozen transverse states can, in fact, be cast in the
form of a Markovian process, even for growth processes
with memory. The price to pay for this is having to sum
over all growth scenarios originating at some level y and
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eventually effecting the occupation of a different level
y +1. In other words, one again has to sum over auxili-
ary variables of some kind (Peliti, 1985); in this case, the
auxiliary variables are obtained by enlarging the state
space from |¢(y)) to |#(2)) [Egs. (9.2), (9.6)]. Neverthe-
less, given the hierarchical ansatz, this must be done over
a restricted region of space; and for fractal growth, the
exponentially fast screening ensures that it has to be done
over only a finite number of time steps for any desired de-
gree of accuracy.

The stationarity condition (9.9), together with the sub-
sequent assumptions, directly implies

——dlw;;y)) =0 (9.14)
Let us write, in analogy with Eq. (9.4),

ill—\l;l—zj(;}i)l=Q|‘I’2(y)> . 9.15)
Now,

(jloliy=M;—5,; , 9.16)

where M;; are the matrix elements of the FST and
Ci(y+1)=3;M;C;(y). Note that the meaning of the in-
dices here has been reversed to conform with common
usage. The M;; are the transition probabilities from the
state |j) to the state |i ). Let us recall that to compute
the M;;, we must consider the eﬁ'ept at level, say, y +1, of
all the growth processes originating at the level y and
proceeding to successive levels y’'=Zy. Although the in-
tervening growth steps may involve processes with
memory, the sum over all such paths clearly depends
only on the end states |j) and |i ).

It is convenient to express M;; as a Green’s function in
the larger state space |r ). Let us embed the transverse
cell state |j ) in this larger space by taking an empty mi-
crostate and acting on it with creation operators at the
lattice sites r{ =(x,y) and, if j=2, also at (x +1,y). We
make the hypothesis that the transverse states at y' <y
are already frozen. Furthermore, since the initial trans-
verse state will grow with probability 1 (see Sec. IV) to
occupy the site (x,y +1), we also create an occupied site
there. We thus obtain the initial state

n Y =m(x,y)m(x+1,p) "'m(x,y +D]0) . (9.17)

Now, setting r,=(x +1,y +1), for an Nth-order ma-
trix element, we have
MY =G(r,t;ryt,+N) , 9.18)

where, by hypothesis, ¢, is so large that G does not de-
pend on it [see Eq. (9.7)]. Thus

G;(ry,ty;ry,t+N)
=G}N)(r1,r2)

=(|mx+1,y+Dalx+1,y+1)Uy[n{) . 9.19
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The evolution operator Uy can be written, symbolically,
in terms of the one-time step operator T as

Uy=TV. (9.20)
It is understood that

T’=3 Tln){n|T .

(9.21)

For Markovian processes, T is state independent and
contains only annihilation and creation operators, at sites
other than those belonging to the initial frozen transverse
cell. For non-Markovian processes, it becomes state
dependent. We shall first treat the equilibrium models
and directed percolation which can be represented by a
Markovian growth process. Then we shall consider the
non-Markovian case.

1. Equilibrium models

For equilibrium models such as percolation, Ising, and
Potts models, and the like, at the critical values of the pa-
rameters (such as temperature, concentration, etc.) the
equilibrium distribution of critical fluctuations can be
recovered as the linear size I of the region under con-
sideration becomes very large—as opposed to the num-
ber of particles N added to the cluster. Each
configuration extending over a region of linear size [/
“freezes” instantly, in the sense that each bond is sam-
pled once and only once. Thus the operator Uy should
act to generate all configurations confined to a region of
size /(N), with the appropriate weights. [In the forego-
ing (Sec. V), we have taken / to be the order of the opera-
tor and equal to the maximum height of the column
above the initial cell.]

The Green’s function G'”(r.,r,) is given [Sec. V,
Pietronero and Stella (1990)] by a sum over contributions
from different configurations on the complete graph S(/)
(see Fig. 42), each containing connected paths between 7,
and r,. Since correlations propagate via nearest-
neighbor links only, we may simply sum over all paths

Ty,

Iy, T2

La La La L

N=1 N=2 N=3

FIG. 42. Complete graphs over which allowed paths will be
considered for the various orders (N) of computation. The
dashed line may be included as part of a path for G,, while it is
excluded for G,. The double lines correspond to the backbone.
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from 7, to r,, irrespective of the rest of the configuration.
Thus U; now has the form

U= 1I II 7., (9.22)
paths€ S(I) r,r' € path
with
T, ,=p,(m(r)—Da(ra(r'(1—m(r)a(r))+1. (9.23)

Here p, is, in general, itself an operator. In terms of the
total number of occupied nearest neighbors of 7,
N,=3  sm(r+8)a(r+8), where {8} run over the lat-
tice vectors to the nearest-neighbor sites, one has (Erzan,
1992)

p., percolation
eqN,Kc
———, Ising(g=2),
eqN’K‘ +qg—1

Pr= |Potts( q=3,4) clusters 9.24)
e N K, _
TINE Ising and Potts droplets .
e " °‘+qg—1

The prescription of taking a sum over paths may be con-
veniently expressed in terms of traces over Grassmann
variables for the intermediate states (Cardy and Sugar,
1980). For the simplest case of percolation, where the
“growth” process is completely uncorrelated, we take a
shortcut by normalizing over only the connected
configurations by assigning weights of unity to ‘“back-
bone” bonds; the others will have weights of p.. To
avoid double counting, a factor of —1 is needed for each
closed loop.

One introduces (Cardy and Sugar, 1980) the bookkeep-
ing variables a,@ (not to be confused with our annihila-
tion operator a —) such that

Tra=0,

Tra=0, (9.25)

Tra,a, =8, , ,

with a?=ia,a >=ia. The Green’s functions in Eq. (9.19)

may then be written

G(I”(rl,rz)=Tra2 11 (@a,) [1I (1+p.@,a,)a, ,
r,r'eb r,r'&b

(9.26)

with b standing for “backbone,” and with the products
extending over links on the graph S(I). To get G,, the
only difference is the insertion of a factor (1+a;a, 4, )-
Note that each link is a directed object, but the products
in this case include links in both senses along any given
edge on the graphs shown in Fig. 42. From Eq. (9.25), it
follows that a3=—a,a*=—ia, etc., and one obtains,
term for term, the expressions for M;; given in Sec. V.

The case of directed percolation is obtained if only links
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in the positive x and y directions are chosen. Then, for
an order N computation, the correlations have to be tak-
en between sites removed by N steps (Cardy and Sugar,
1980; Erzan, 1992).

2. Non-Markovian processes

In general, for irreversible aggregation processes where
the growth probability at each time step has been nor-
malized to 1, T in Eq. (9.20) will have the form

=3 mw(r)p,0,.(s—ma,) 9.27)
with r#(x +1,y ) above. We have defined
O, =1—[J[1—w(r+8)a(r+8)]. (9.28)

+8

This operator will have a value of 1 if the site  has one or
more nearest neighbors, and zero if it has none. For the
parameter value s =1, if the site is not already occupied,
and if it has at least one nearest neighbor, growth will
take place there with probability p,. Clearly, s > 1 corre-
sponds to noise reduction.

In the case of Laplacian growth rules, the p, depend on
the spatial correlations between all the sites of the aggre-
gated cluster, through the Green’s function for the La-
placian field. Without the inclusion of a further set of
auxiliary variables for the Laplacian field (Peliti, 1985),
we are unable to write p, in a state-independent way,
solely in terms of the creation and annihilation operators
of the aggregated particles. Exhibiting this state depen-
dence explicitly, one has

GM(ry,1)
N—1 . .
=3 (nylma, [T |2 Ta)la ) nl |T()n§’) .
ay =ty
(9.29)

This is nothing but a compact way of writing down the
branching growth scenarios as outlined in Secs. IV and
VII for the computation of M;;, where, at each stage, p,
were computed explicitly from the discrete Laplace’s
equation subject to the boundary conditions (Sec. IV.D).
The central factor in Eq. (9.29) is a sum over paths in the
space of aggregation clusters, with each path weighted by
the growth probabilities.

Clearly, the Uy either in Egs. (9.19), (9.22) or in (9.29)
may be cast, in the continuum limit as N — o, in the
form of a path integral, and the field-theoretic formula-
tion for these processes (Parisi and Zhang, 1985; Peliti,
1985) will be recovered. In fact, starting from the parti-
cle density of the growing cluster and the diffusive field of
the random-walking particle encountering the clusters, it
is possible to derive the action of the resulting field
theory. This is a modified Reggeon field theory with non-
local interactions with the following action:
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S=fddxdt [cp+8,¢+aV¢p+V<p+y.2<p+<p+ig(aV¢7+V<p—<p+<p)fddyG(x —yNaA+ut)py)—ige e | ,

where the field @ is related to the density function of the
growing clusters.

One can expand the nonlocal interaction term, obtain-
ing an action with the free part S, =¢'0,p
+aVeVet +u’pT @ that is similar to those of the ran-
dom walks with traps problems, plus interacting terms
that are nonlocal interactions in the higher powers of ¢.
One should go beyond the mean-field theory by consider-
ing the perturbation terms; but, unfortunately, the usual
renormalization treatment is impossible. In fact, the
theory is superrenormalizable in the ultraviolet limit in
every dimension d, as is easy to show from the dimen-
sional analysis. This means, from a statistical-mechanics
standpoint, that there exists no upper critical dimension
and the theory is not renormalizable. In this sense, the
free action of the random walk is not a good starting
point for the perturbative analysis of the problem, and
the practical calculations cannot be performed with the
usual perturbation methods. In addition, the field theory
cannot take into account such variations of the model as
the inclusion of the n parameter in the DBM. This last
parameter will lead to a nonpolynomial field theory for
which it is extremely complicated even to write the corre-
sponding action.

For all these reasons, little progress has been made
within the field theory framework in the practical calcu-
lation of quantities like G(r,¢;r’,t'). On the other hand,
for r,r’ chosen on consecutive intersection sets, we are
indeed able to compute such Green’s functions for finite
N=t'—t, and they converge rapidly in N. Then these
Green’s functions play the role of transition probabilities
in a Markovian process defined on a set of states dimen-
sionally lower than those describing the whole aggregat-
ed cluster. The steady-state solution for this Markovian
process gives us the transverse macrostates, from which
we are able to compute the fractal dimension of the inter-
section sets.

E. The fixed-scale transformation
and scale-invariant dynamics

Let us now look at the FST method from a field-theory
perspective and see how it allows us to overcome at least
the most serious difficulties that arise when one tries to
cast irreversible fractal growth in a standard theoretical
framework. We have seen in the previous section that a
Lagrangian approach to DLA leads to a nonrenormaliz-
able, strong-coupling problem. In analogy with other
similar situations in field theory, like quantum chromo-
dynamics (QCD), one way to overcome this difficulty is
to make a lattice regularization. In some sense this corre-
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(9.30)

sponds to the original algorithm of growth that is used in
the computer simulations. This also seems to imply that
the continuum limit for DLA is a delicate problem, and
the discreteness of the problem appears to be an essential
element.

The point is then how to perform the lattice path in-
tegrals analytically and with a finite amount of labor.
This brings us back to the problems of the two limits,
asymptotic time (¢ — o ) and large scale (r — o ), that we
discussed at the beginning. In a standard approach, one
would try to do these two limits together, by letting the
system evolve and renormalizing its dynamics at the
same time. This procedure appears to be extremely com-
plex for DLA-type problems, while it is more feasible for
Hamiltonian problems in which ergodicity allows one to
simplify the problem by just summing over all the
configurations.

Here the FST approach is quite different because it
performs these two limits separately. First, one focuses
on the short-range correlations generated by asymptotic
growth. This is done, in practice, by the intersection and
by the transfer matrix along the growth direction. The
matrix elements can be defined by suitable lattice path in-
tegrals. This represents the original FST scheme, and it
represents a novel approach to computing correlations in
problems that are intrinsically dynamical. Even though
the method is in real space, it can be improved systemati-
cally by increasing the accuracy of the calculation of the
lattice path integrals.

The basic idea of going to large scale does not involve
considering larger and larger configurations, but reinter-
preting the “sites” for which one is able to compute the
short-range correlations as coarse-grained cells. If one is
able to do this, then the FST produces the nearest-
neighbor correlations for pairs of coarse-grained cells of
any size, and from these the fractal dimension can be
computed analytically. The key point of this second part
is the identification of the scale-invariant dynamics for
the coarse-grained cells. This implies the formulation of
a renormalization procedure that is specific for a given
problem. For example, in Ising problems, the scale-
invariant dynamics corresponds essentially to the deter-
mination of the critical temperature T,,. For percolation,
it corresponds to the critical probability p.. For DLA,
the problem is much more complex, as we have seen in
Sec. VII. This procedure is able to deal naturally with
self-organized processes in which the scale-invariant dy-
namics corresponds to an attractive fixed point.

The FST consists therefore in a novel approach in
which attention is especially focused on the dynamics of
the processes, and it should be easily applicable to other
problems of this class.
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X. CONCLUSIONS

The challenge posed in the Introduction, namely, that
of defining a measure on the phase space of far from equi-
librium fluctuations, can be restated as formulating a sta-
tistical mechanics of spatially extended irreversible
dynamical systems. The diversity of models treated in
this (by no means exhaustive) review attests to the rich-
ness of this domain: we have diffusion-limited, irreversi-
ble aggregation of particles and clusters, sandpile, and
directed and invasion percolation, as well as equilibrium,
or Hamiltonian, models, which we can reformulate in
dynamical terms.

Apart from the many technical aspects outlined in the
foregoing sections, there are other fundamental issues of
spatio-temporal pattern formation, to which we think we
have contributed.

These issues are (i) the possibility of computing asymp-
totic correlations for irreversible growth processes in
terms of a suitable lattice path integral; (ii) a method of
analysis for identifying the effective scale-invariant dy-
namics, given the microscopic one, which allows us to
understand the self-organized nature of fractal structure
in terms of an attractive fixed point for the dynamics; (iii)
the combination of the above two points, which allows us
to develop an effective language and theoretical frame-
work for the description of fractal growth and for the
analytical calculation of fractal dimensions.

The present formulation of the theoretical approach is
quite different from the standard renormalization group,
even though we have seen that there is a common area,
that of equilibrium Hamiltonian models, where both can
be applied. In other areas, though, one tends to be more
suitable than the other. For example, the FST is
designed to work only at the fixed point; so it could not
be applied to exponents that characterize the deviations
from the critical point, like the magnetic-field exponent
&(T)~|T—T.,|P of the Ising model. On the other hand,
the FST is able to deal with self-critical irreversible prob-
lems, like DLA growth, for which the standard RG ideas
are very problematic.

This is because the RG approach is explicitly designed
to compute the exponents that characterize the approach
to the critical point. Exponents like v are, in fact, linked
to the derivative of the RG transformation at the critical
point. The point is, however, that in fractal growth the
dynamical process is self-organized and the correspond-
ing fixed point is attractive. Therefore exponents like v
do not exist, and the derivative of an eventual RG trans-
formation cannot be related to the critical properties.

This situation requires a new way of looking at the
problem, and this is what the FST provides. The scale
transformation for the dynamics is used only to define
the critical parameters, independently of whether the
fixed point is repulsive or attractive. Then, from the crit-
ical parameter, the FST allows us to derive directly the
fractal dimension. This is a new perspective that can also
deal naturally with self-organized problems like DLA in
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which the fixed point is attractive. The FST is then
based on various technical points like the separation of
the two limits, asymptotic time and large scale. For
irreversible-growth problems, these limits must be con-
sidered explicitly, because these systems are not ergodic.
The method is therefore particularly tuned to focus on
the dynamical properties of the system rather than on the
equilibrium configurations.

Another intriguing aspect of critical systems is the
question of universality. With phase transitions, we are
familiar with a strong universality, and the same ex-
ponents that describe the onset of magnetization also de-
scribe the liquid-vapor transitions. This crucial role of
universality is, however, characteristic of equilibrium sys-
tems. Self-organized systems, on the other hand, do not
exhibit the same degree of universality. It is relatively
easy to modify the fractal dimension with some simple
change in the growth process, and this seems to be a
characteristic of models with irreversible dynamics. This
lack of universality is sometimes viewed as a negative ele-
ment, because one is forced to describe specific systems
instead of a single universal model. The truth is probably
the opposite. Some theoretical concepts can be con-
sidered as general or universal, but the inherent diversity
of the various models we have described adds another
fascinating dimension to the intellectual search. After
all, the fractal structures we observe in nature are quite
various and different from each other. In this respect the
situation of self-organized fractals is probably more simi-
lar to solid-state theory than to equilibrium phase transi-
tions. In solid state there are universal properties like the
Bloch theorem, but then one has to make different
theories for the various properties of solids.

In this respect the FST represents a general framework
that should also be applicable to other problems of the
nature. In fact, with these ideas as inspiration, it has re-
cently become possible to describe the properties of the
critical state of sandpile models that are a different class
of self-organized critical systems (Pietronero et al.,
1994). The attractive nature of the fixed point can be
properly described, and the various exponents for. the
avalanche distribution and other properties can be com-
puted analytically. Another important element we have
briefly discussed is the transformation of a deterministic
problem with quenched variables in a stochastic dynam-
ics with cognitive memory. This brings a vast class of
quenched models (like IP) into the area of FST applica-
bility.
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FIG. 1. DLA/DBM cluster (off-lattice) with radial boundary conditions. The colors of the structure refer to the aggregation time of
each particle. Note the screening effect: late (red) particles cease modifying the inner blue portion, which therefore can be considered
asymptotic. Only for this “frozen” part can fractal properties be properly defined. The contours around the structure represent equi-
potential lines for the Laplacian field. A pair of black and white stripes corresponds to a change by a factor of 10 of the potential

(courtesy of C. J. G. Evertsz and B. B. Mandelbrot).



